\qquad

Calculus AB Multiple Choice Exam

 Section 1

 Section 1
 No Calculator Active

Calculus AB Multiple Choice Exam
 Section 2 Calculator Active

AP Calculus 2008 Multiple Choice

1. $\lim _{x \rightarrow \infty} \frac{(2 x-1)(3-x)}{(x-1)(x+3)}$ is
(A) -3
(B) -2
(C) 2
(D) 3
(E) nonexistent
2. $\int \frac{1}{x^{2}} d x=$
(A) $\ln x^{2}+C$
(B) $-\ln x^{2}+C$
(C) $x^{-1}+C$
(D) $-x^{-1}+C$
(E) $-2 x^{-3}+C$

AP Calculus 2008 Multiple Choice
3. If $f(x)=(x-1)\left(x^{2}+2\right)^{3}$, then $f^{\prime}(x)=$
(A) $6 x\left(x^{2}+2\right)^{2}$
(B) $6 x(x-1)\left(x^{2}+2\right)^{2}$
(C) $\left(x^{2}+2\right)^{2}\left(x^{2}+3 x-1\right)$
(D) $\left(x^{2}+2\right)^{2}\left(7 x^{2}-6 x+2\right)$
(E) $-3(x-1)\left(x^{2}+2\right)^{2}$
4. $\int(\sin (2 x)+\cos (2 x)) d x=$
(A) $\frac{1}{2} \cos (2 x)+\frac{1}{2} \sin (2 x)+C$
(B) $-\frac{1}{2} \cos (2 x)+\frac{1}{2} \sin (2 x)+C$
(C) $2 \cos (2 x)+2 \sin (2 x)+C$
(D) $2 \cos (2 x)-2 \sin (2 x)+C$
(E) $-2 \cos (2 x)+2 \sin (2 x)+C$
5. $\lim _{x \rightarrow 0} \frac{5 x^{4}+8 x^{2}}{3 x^{4}-16 x^{2}}$ is
(A) $-\frac{1}{2}$
(B) 0
(C) 1
(D) $\frac{5}{3}+1$
(E) nonexistent

$$
f(x)= \begin{cases}\frac{x^{2}-4}{x-2} & \text { if } x \neq 2 \\ 1 & \text { if } x=2\end{cases}
$$

6. Let f be the function defined above. Which of the following statements about f are true?
I. f has a limit at $x=2$.
II. f is continuous at $x=2$.
III. f is differentiable at $x=2$.
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III
7. A particle moves along the x-axis with velocity given by $v(t)=3 t^{2}+6 t$ for time $t \geq 0$. If the particle is at position $x=2$ at time $t=0$, what is the position of the particle at $t=1$?
(A) 4
(B) 6
(C) 9
(D) 11
(E) 12
8. If $f(x)=\cos (3 x)$, then $f^{\prime}\left(\frac{\pi}{9}\right)=$
(A) $\frac{3 \sqrt{3}}{2}$
(B) $\frac{\sqrt{3}}{2}$
(C) $-\frac{\sqrt{3}}{2}$
(D) $-\frac{3}{2}$
(E) $-\frac{3 \sqrt{3}}{2}$

Graph of f
9. The graph of the piecewise linear function f is shown in the figure above. If $g(x)=\int_{-2}^{x} f(t) d t$, which of the following values is greatest?
(A) $g(-3)$
(B) $g(-2)$
(C) $g(0)$
(D) $g(1)$
(E) $g(2)$

10. The graph of function f is shown above for $0 \leq x \leq 3$. Of the following, which has the least value?
(A) $\int_{1}^{3} f(x) d x$
(B) Left Riemann sum approximation of $\int_{1}^{3} f(x) d x$ with 4 subintervals of equal length
(C) Right Riemann sum approximation of $\int_{1}^{3} f(x) d x$ with 4 subintervals of equal length
(D) Midpoint Riemann sum approximation of $\int_{1}^{3} f(x) d x$ with 4 subintervals of equal length
(E) Trapezoidal sum approximation of $\int_{1}^{3} f(x) d x$ with 4 subintervals of equal length

Graph of f
11. The graph of a function f is shown above. Which of the following could be the graph of f^{\prime}, the derivative of f ?
(A)

(B)

(E)

AP Calculus 2008 Multiple Choice
12. If $f(x)=e^{(2 / x)}$, then $f^{\prime}(x)=$
(A) $2 e^{(2 / x)} \ln x$
(B) $e^{(2 / x)}$
(C) $e^{\left(-2 / x^{2}\right)}$
(D) $-\frac{2}{x^{2}} e^{(2 / x)}$
(E) $-2 x^{2} e^{(2 / x)}$
13. If $f(x)=x^{2}+2 x$, then $\frac{d}{d x}(f(\ln x))=$
(A) $\frac{2 \ln x+2}{x}$
(B) $2 x \ln x+2$
(C) $2 \ln x+2$
(D) $2 \ln x+\frac{2}{x}$
(E) $\frac{2 x+2}{x}$

x	0	1	2	3
$f^{\prime \prime}(x)$	5	0	-7	4

14. The polynomial function f has selected values of its second derivative f " given in the table above. Which of the following statements must be true?
(A) f is increasing on the interval $(0,2)$.
(B) f is decreasing on the interval $(0,2)$.
(C) f has a local maximum at $x=1$.
(D) The graph of f has a point of inflection at $x=1$.
(E) The graph of f changes concavity in the interval $(0,2)$.
15. $\int \frac{x}{x^{2}-4} d x=$
(A) $\frac{-1}{4\left(x^{2}-4\right)^{2}}+C$
(B) $\frac{1}{2\left(x^{2}-4\right)}+C$
(C) $\frac{1}{2} \ln \left|x^{2}-4\right|+C$
(D) $2 \ln \left|x^{2}-4\right|+C$
(E) $\frac{1}{2} \arctan \left(\frac{x}{2}\right)+C$
16. If $\sin (x y)=x$, then $\frac{d y}{d x}=$
(A) $\frac{1}{\cos (x y)}$
(B) $\frac{1}{x \cos (x y)}$
(C) $\frac{1-\cos (x y)}{\cos (x y)}$
(D) $\frac{1-y \cos (x y)}{x \cos (x y)}$
(E) $\frac{y(1-\cos (x y))}{x}$

17. The graph of the function f shown above has horizontal tangents at $x=2$ and $x=5$. Let g be the function defined by $g(x)=\int_{0}^{x} f(t) d t$. For what values of x does the graph of g have a point of inflection?
(A) 2 only
(B) 4 only
(C) 2 and 5 only
(D) 2, 4, and 5
(E) 0,4 , and 6
18. In the $x y$-plane, the line $x+y=k$, where k is a constant, is tangent to the graph of $y=x^{2}+3 x+1$. What is the value of k ?
(A) -3
(B) -2
(C) -1
(D) 0
(E) 1
19. What are all horizontal asymptotes of the graph of $y=\frac{5+2^{x}}{1-2^{x}}$ in the $x y$-plane?
(A) $y=-1$ only
(B) $y=0$ only
(C) $y=5$ only
(D) $y=-1$ and $y=0$
(E) $y=-1$ and $y=5$
20. Let f be a function with a second derivative given by $f^{\prime \prime}(x)=x^{2}(x-3)(x-6)$. What are the x-coordinates of the points of inflection of the graph of f ?
(A) 0 only
(B) 3 only
(C) 0 and 6 only
(D) 3 and 6 only
(E) 0, 3, and 6

21. A particle moves along a straight line. The graph of the particle's position $x(t)$ at time t is shown above for $0<t<6$. The graph has horizontal tangents at $t=1$ and $t=5$ and a point of inflection at $t=2$. For what values of t is the velocity of the particle increasing?
(A) $0<t<2$
(B) $1<t<5$
(C) $2<t<6$
(D) $3<t<5$ only
(E) $1<t<2$ and $5<t<6$
22. A rumor spreads among a population of N people at a rate proportional to the product of the number of people who have heard the rumor and the number of people who have not heard the rumor. If p denotes the number of people who have heard the rumor, which of the following differential equations could be used to model this situation with respect to time t, where k is a positive constant?
(A) $\frac{d p}{d t}=k p$
(B) $\frac{d p}{d t}=k p(N-p)$
(C) $\frac{d p}{d t}=k p(p-N)$
(D) $\frac{d p}{d t}=k t(N-t)$
(E) $\frac{d p}{d t}=k t(t-N)$
23. Which of the following is the solution to the differential equation $\frac{d y}{d x}=\frac{x^{2}}{y}$ with the initial condition $y(3)=-2$?
(A) $y=2 e^{-9+x^{3} / 3}$
(B) $y=-2 e^{-9+x^{3} / 3}$
(C) $y=\sqrt{\frac{2 x^{3}}{3}}$
(D) $y=\sqrt{\frac{2 x^{3}}{3}-14}$
(E) $y=-\sqrt{\frac{2 x^{3}}{3}-14}$
24. The function f is twice differentiable with $f(2)=1, f^{\prime}(2)=4$, and $f^{\prime \prime}(2)=3$. What is the value of the approximation of $f(1.9)$ using the line tangent to the graph of f at $x=2$?
(A) 0.4
(B) 0.6
(C) 0.7
(D) 1.3
(E) 1.4

$$
f(x)=\left\{\begin{array}{lll}
c x+d & \text { for } & x \leq 2 \\
x^{2}-c x & \text { for } & x>2
\end{array}\right.
$$

25. Let f be the function defined above, where c and d are constants. If f is differentiable at $x=2$, what is the value of $c+d$?
(A) -4
(B) -2
(C) 0
(D) 2
(E) 4
26. What is the slope of the line tangent to the curve $y=\arctan (4 x)$ at the point at which $x=\frac{1}{4}$?
(A) 2
(B) $\frac{1}{2}$
(C) 0
(D) $-\frac{1}{2}$
(E) -2

27. Shown above is a slope field for which of the following differential equations?
(A) $\frac{d y}{d x}=x y$
(B) $\frac{d y}{d x}=x y-y$
(C) $\frac{d y}{d x}=x y+y$
(D) $\frac{d y}{d x}=x y+x$
(E) $\frac{d y}{d x}=(x+1)^{3}$
28. Let f be a differentiable function such that $f(3)=15, f(6)=3, f^{\prime}(3)=-8$, and $f^{\prime}(6)=-2$. The function g is differentiable and $g(x)=f^{-1}(x)$ for all x. What is the value of $g^{\prime}(3)$?
(A) $-\frac{1}{2}$
(B) $-\frac{1}{8}$
(C) $\frac{1}{6}$
(D) $\frac{1}{3}$
(E) The value of $g^{\prime}(3)$ cannot be determined from the information given.

29. The graph of f^{\prime}, the derivative f, is shown above for $-2 \leq x \leq 5$. On what intervals is f increasing?
(A) $[-2,1]$ only
(B) $[-2,3]$
(C) $[3,5]$ only
(D) $[0,1.5]$ and $[3,5]$
(E) $[-2,-1],[1,2]$, and $[4,5]$

Graph of f
77. The figure above shows the graph of a function f with domain $0 \leq x \leq 4$. Which of the following statements are true?
I. $\lim _{x \rightarrow 2^{-}} f(x)$ exists.
II. $\lim _{x \rightarrow 2^{+}} f(x)$ exists.
III. $\lim _{x \rightarrow 2} f(x)$ exists.
(A) I only
(B) II only
(C) I and II only
(D) I and III only
(E) I, II, and III
78. The first derivative of the function f is defined by $f^{\prime}(x)=\sin \left(x^{3}-x\right)$ for $0 \leq x \leq 2$. On what interval(s) is f increasing?
(A) $1 \leq x \leq 1.445$
(B) $1 \leq x \leq 1.691$
(C) $1.445 \leq x \leq 1.875$
(D) $0.577 \leq x \leq 1.445$ and $1.875 \leq x \leq 2$
(E) $0 \leq x \leq 1$ and $1.691 \leq x \leq 2$
79. If $\int_{-5}^{2} f(x) d x=-17$ and $\int_{5}^{2} f(x) d x=-4$, what is the value of $\int_{-5}^{5} f(x) d x$?
(A) -21
(B) -13
(C) 0
(D) 13
(E) 21
80. The derivative of the function f is given by $f^{\prime}(x)=x^{2} \cos \left(x^{2}\right)$. How many points of inflection does the graph of f have on the open interval $(-2,2)$?
(A) One
(B) Two
(C) Three
(D) Four
(E) Five
81. If $G(x)$ is an antiderivative for $f(x)$ and $G(2)=-7$, then $G(4)=$
(A) $f^{\prime}(4)$
(B) $-7+f^{\prime}(4)$
(C) $\int_{2}^{4} f(t) d t$
(D) $\int_{2}^{4}(-7+f(t)) d t$
(E) $-7+\int_{2}^{4} f(t) d t$
82. A particle moves along a straight line with velocity given by $v(t)=7-(1.01)^{-t^{2}}$ at time $t \geq 0$. What is the acceleration of the particle at time $t=3$?
(A) -0.914
(B) 0.055
(C) 5.486
(D) 6.086
(E) 18.087
83. What is the area enclosed by the curves $y=x^{3}-8 x^{2}+18 x-5$ and $y=x+5$?
(A) 10.667
(B) 11.833
(C) 14.583
(D) 21.333
(E) 32

84. The graph of the derivative of a function f is shown in the figure above. The graph has horizontal tangent lines at $x=-1, x=1$, and $x=3$. At which of the following values of x does f have a relative maximum?
(A) -2 only
(B) 1 only
(C) 4 only
(D) -1 and 3 only
(E) $-2,1$, and 4

x	-4	-3	-2	-1
$f(x)$	0.75	-1.5	-2.25	-1.5
$f^{\prime}(x)$	-3	-1.5	0	1.5

85. The table above gives values of a function f and its derivative at selected values of x. If f^{\prime} is continuous on the interval $[-4,-1]$, what is the value of $\int_{-4}^{-1} f^{\prime}(x) d x$?
(A) -4.5
(B) -2.25
(C) 0
(D) 2.25
(E) 4.5

t	0	1	2	3	4
$v(t)$	-1	2	3	0	-4

86. The table gives selected values of the velocity, $v(t)$, of a particle moving along the x-axis. At time $t=0$, the particle is at the origin. Which of the following could be the graph of the position, $x(t)$, of the particle for $0 \leq t \leq 4$?
(A) $\quad x(t)$

(B) $\quad x(t)$

(C) $\quad x(t)$

(D) $x(t)$

(E) $\quad x(t)$

87. An object traveling in a straight line has position $x(t)$ at time t. If the initial position is $x(0)=2$ and the velocity of the object is $v(t)=\sqrt[3]{1+t^{2}}$, what is the position of the object at time $t=3$?
(A) 0.431
(B) 2.154
(C) 4.512
(D) 6.512
(E) 17.408
88. The radius of a sphere is decreasing at a rate of 2 centimeters per second. At the instant when the radius of the sphere is 3 centimeters, what is the rate of change, in square centimeters per second, of the surface area of the sphere? (The surface area S of a sphere with radius r is $S=4 \pi r^{2}$)
(A) -108π
(B) -72π
(C) -48π
(D) -24π
(E) -16π
89. The function f is continuous for $-2 \leq x \leq 2$ and $f(-2)=f(2)=0$. If there is no c, where $-2<c<2$, for which $f^{\prime}(c)=0$, which of the following statements must be true?
(A) For $-2<k<2, f^{\prime}(k)>0$.
(B) For $-2<k<2, f^{\prime}(k)<0$.
(C) For $-2<k<2, f^{\prime}(k)$ exists.
(D) For $-2<k<2, f^{\prime}(k)$ exists, but f^{\prime} is not continuous.
(E) For some k, where $-2<k<2, f^{\prime}(k)$ does not exist.
90. The function f is continuous on the closed interval [2,4] and twice differentiable on the open interval $(2,4)$. If $f^{\prime}(3)=2$ and $f^{\prime \prime}(x)<0$ on the open interval $(2,4)$, which of the following could be a table of values for f ?
(A)

x	$f(x)$
2	2.5
3	5
4	6.5

(B)

x	$f(x)$
2	2.5
3	5
4	7

(C)

x	$f(x)$
2	3
3	5
4	6.5

(D)

x	$f(x)$
2	3
3	5
4	7

(E)

x	$f(x)$
2	3.5
3	5
4	7.5

91. What is the average value of $y=\frac{\cos x}{x^{2}+x+2}$ on the closed interval $[-1,3]$?
(A) -0.085
(B) 0.090
(C) 0.183
(D) 0.244
(E) 0.732

92. A city located beside a river has a rectangular boundary as shown in the figure above. The population density of the city at any point along a strip x miles from the river's edge is $f(x)$ persons per square mile. Which of the following expressions gives the population of the city?
(A) $\int_{0}^{4} f(x) d x$
(B) $7 \int_{0}^{4} f(x) d x$
(C) $28 \int_{0}^{4} f(x) d x$
(D) $\int_{0}^{7} f(x) d x$
(E) $4 \int_{0}^{7} f(x) d x$
