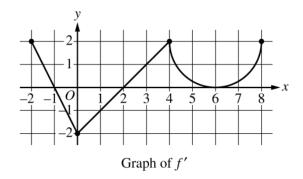
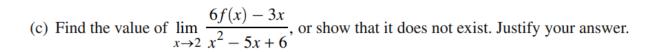


Area
Under
The
Curve
FRQs



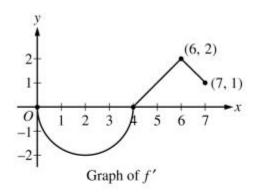
- 4. The function f is defined on the closed interval [-2, 8] and satisfies f(2) = 1. The graph of f', the derivative of f, consists of two line segments and a semicircle, as shown in the figure.
 - (a) Does f have a relative minimum, a relative maximum, or neither at x = 6? Give a reason for your answer.

(b) On what open intervals, if any, is the graph of f concave down? Give a reason for your answer.



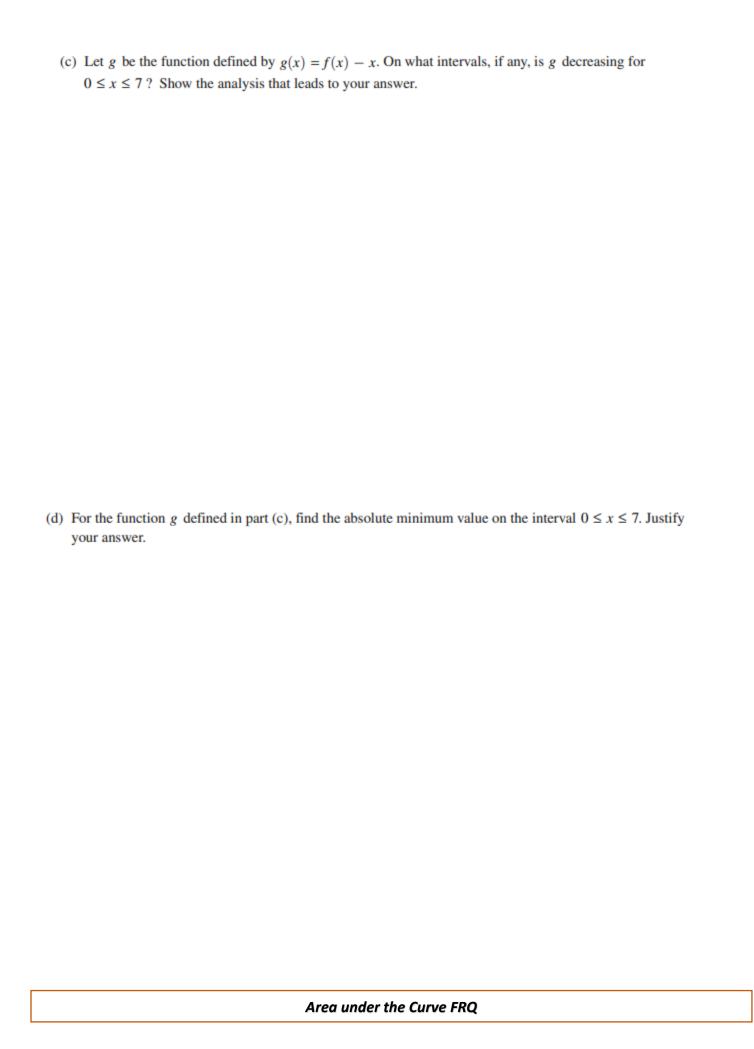
(d) Find the absolute minimum value of f on the closed interval [-2, 8]. Justify your answer.

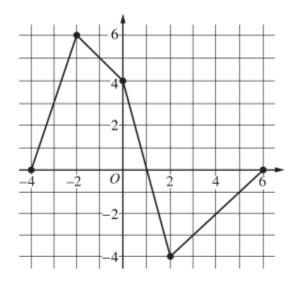
Area under the Curve FRQ



- 3. Let f be a differentiable function with f(4) = 3. On the interval $0 \le x \le 7$, the graph of f', the derivative of f, consists of a semicircle and two line segments, as shown in the figure above.
 - (a) Find f(0) and f(5).

(b) Find the x-coordinates of all points of inflection of the graph of f for 0 < x < 7. Justify your answer.

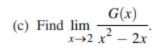




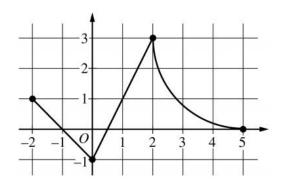
Graph of f

- 4. Let f be a continuous function defined on the closed interval $-4 \le x \le 6$. The graph of f, consisting of four line segments, is shown above. Let G be the function defined by $G(x) = \int_0^x f(t) dt$.
 - (a) On what open intervals is the graph of G concave up? Give a reason for your answer.

(b) Let P be the function defined by $P(x) = G(x) \cdot f(x)$. Find P'(3).



(d) Find the average rate of change of G on the interval [-4, 2]. Does the Mean Value Theorem guarantee a value c, -4 < c < 2, for which G'(c) is equal to this average rate of change? Justify your answer.



Graph of f

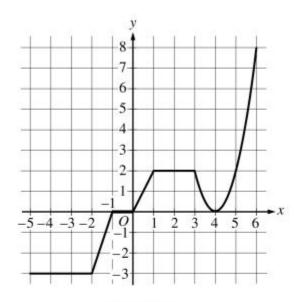
- 3. The continuous function f is defined on the closed interval $-6 \le x \le 5$. The figure above shows a portion of the graph of f, consisting of two line segments and a quarter of a circle centered at the point (5, 3). It is known that the point $(3, 3 \sqrt{5})$ is on the graph of f.
 - (a) If $\int_{-6}^{5} f(x) dx = 7$, find the value of $\int_{-6}^{-2} f(x) dx$. Show the work that leads to your answer.

(b) Evaluate $\int_{3}^{5} (2f'(x) + 4) dx$.

(c) The function g is given by $g(x) = \int_{-2}^{x} f(t) dt$. Find the absolute maximum value of g on the interval

 $-2 \le x \le 5$. Justify your answer.

(d) Find $\lim_{x\to 1} \frac{10^x - 3f'(x)}{f(x) - \arctan x}$.



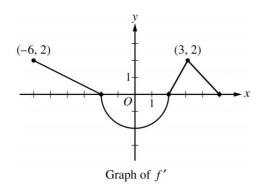
Graph of g

- 3. The graph of the continuous function g, the derivative of the function f, is shown above. The function g is piecewise linear for $-5 \le x < 3$, and $g(x) = 2(x-4)^2$ for $3 \le x \le 6$.
 - (a) If f(1) = 3, what is the value of f(-5)?

(b) Evaluate $\int_{1}^{6} g(x) dx$.

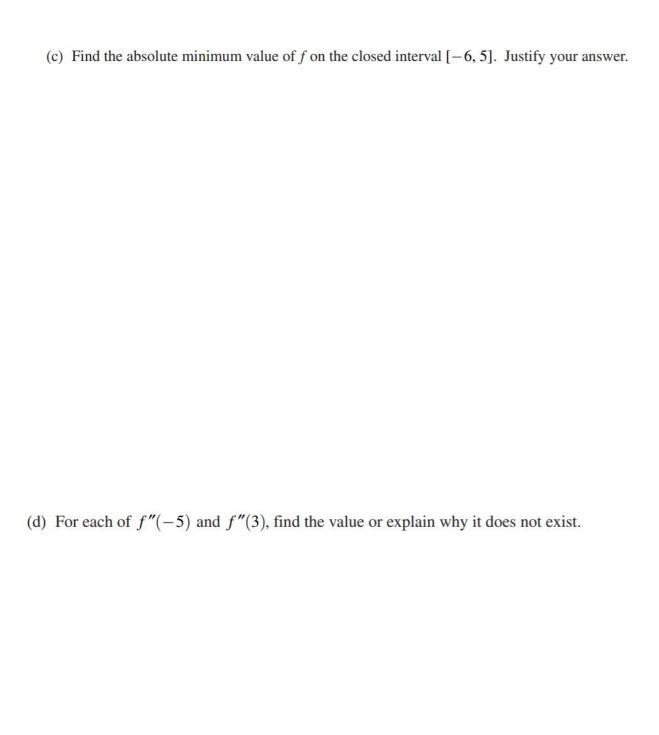
(c) For $-5 < x < 6$, on what open intervals, if any, is the graph of f both increasing and concave up? Give a
reason for your answer.
(d) Find the x-coordinate of each point of inflection of the graph of f. Give a reason for your answer.
Area under the Curve FRQ

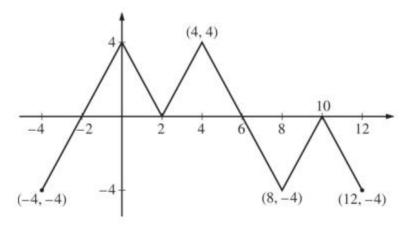
NO CALCULATOR IS ALLOWED FOR THESE QUESTIONS.



- 3. The function f is differentiable on the closed interval [-6, 5] and satisfies f(-2) = 7. The graph of f', the derivative of f, consists of a semicircle and three line segments, as shown in the figure above.
 - (a) Find the values of f(-6) and f(5).

(b) On what intervals is f increasing? Justify your answer.

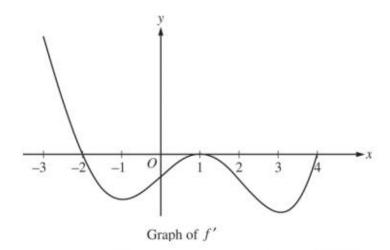




Graph of f

- 3. The figure above shows the graph of the piecewise-linear function f. For $-4 \le x \le 12$, the function g is defined by $g(x) = \int_2^x f(t) dt$.
 - (a) Does g have a relative minimum, a relative maximum, or neither at x = 10? Justify your answer.

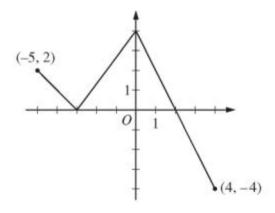
(b) Does the graph of g have a point of inflection at x = 4? Justify your answer.



- 5. The figure above shows the graph of f', the derivative of a twice-differentiable function f, on the interval [-3, 4]. The graph of f' has horizontal tangents at x = -1, x = 1, and x = 3. The areas of the regions bounded by the x-axis and the graph of f' on the intervals [-2, 1] and [1, 4] are 9 and 12, respectively.
 - (a) Find all x-coordinates at which f has a relative maximum. Give a reason for your answer.

(b) On what open intervals contained in -3 < x < 4 is the graph of f both concave down and decreasing? Give a reason for your answer.

(c) Find the x-coordinates of all points of inflection for the graph of f. Give a reason for your answer.
(d) Given that $f(1) = 3$, write an expression for $f(x)$ that involves an integral. Find $f(4)$ and $f(-2)$.
Area under the Curve FRQ

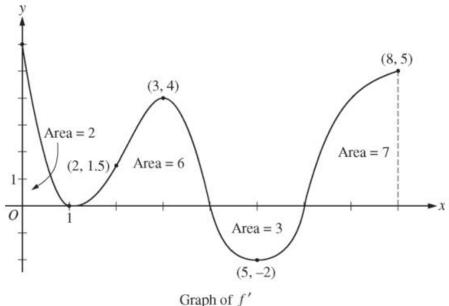


Graph of f

- 3. The function f is defined on the closed interval [-5, 4]. The graph of f consists of three line segments and is shown in the figure above. Let g be the function defined by $g(x) = \int_{-3}^{x} f(t) dt$.
 - (a) Find g(3).

(b) On what open intervals contained in -5 < x < 4 is the graph of g both increasing and concave down? Give a reason for your answer.

(d) The function p is defined by $p(x) = f(x^2 - x)$. Find the slope of the line tangent to the graph of p at the point where x = -1.

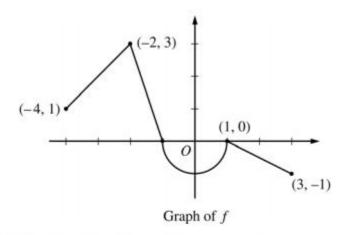


- Graph of J
- 4. The figure above shows the graph of f', the derivative of a twice-differentiable function f, on the closed interval 0 ≤ x ≤ 8. The graph of f' has horizontal tangent lines at x = 1, x = 3, and x = 5. The areas of the regions between the graph of f' and the x-axis are labeled in the figure. The function f is defined for all real numbers and satisfies f(8) = 4.
 - (a) Find all values of x on the open interval 0 < x < 8 for which the function f has a local minimum. Justify your answer.

(b) Determine the absolute minimum value of f on the closed interval $0 \le x \le 8$. Justify your answer.

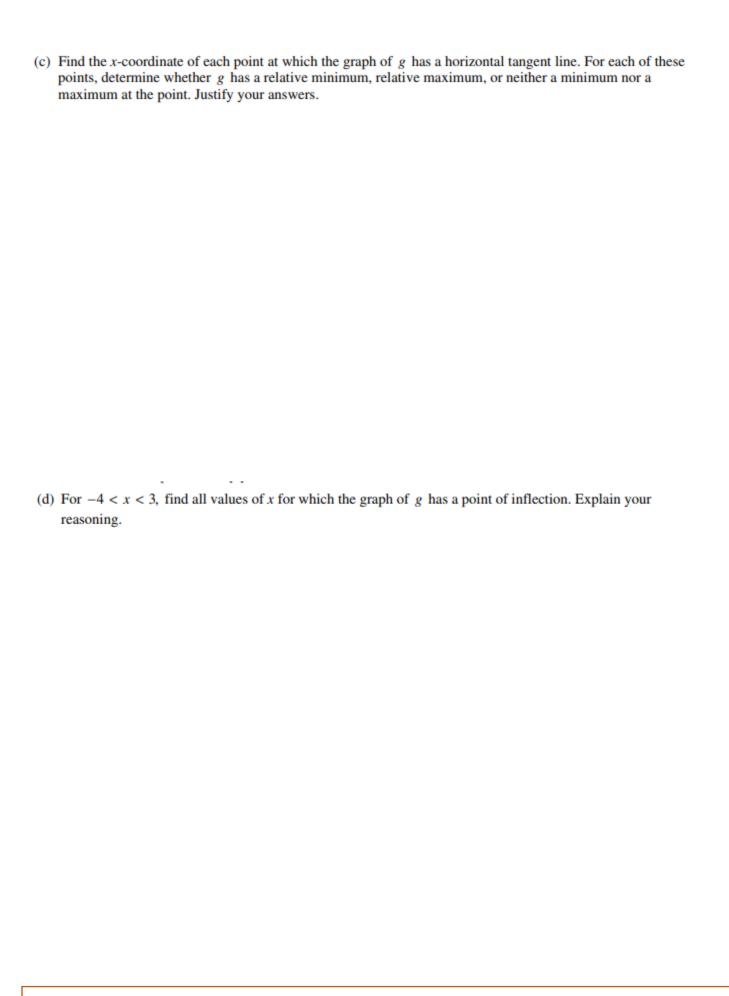
(c) On what open intervals contained in 0 < x < 8 is the graph of f both concave down and increasing? Explain your reasoning.

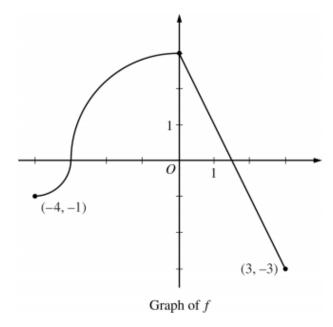
(d) The function g is defined by $g(x) = (f(x))^3$. If $f(3) = -\frac{5}{2}$, find the slope of the line tangent to the graph of g at x = 3.



- 3. Let f be the continuous function defined on [-4,3] whose graph, consisting of three line segments and a semicircle centered at the origin, is given above. Let g be the function given by $g(x) = \int_1^x f(t) dt$.
 - (a) Find the values of g(2) and g(-2).

(b) For each of g'(-3) and g''(-3), find the value or state that it does not exist.





- 4. The continuous function f is defined on the interval $-4 \le x \le 3$. The graph of f consists of two quarter circles and one line segment, as shown in the figure above. Let $g(x) = 2x + \int_0^x f(t) dt$.
 - (a) Find g(-3). Find g'(x) and evaluate g'(-3).

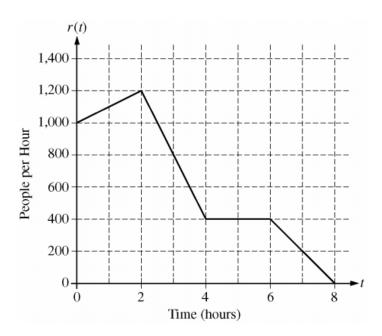
(b) Determine the x-coordinate of the point at which g has an absolute maximum on the interval $-4 \le x \le 3$. Justify your answer.

	Find a	all value		interval	-4 < .	x < 3	for wh	ich the	e graph	of g	has a p	oint of	finfleo	ction.

Give a

(d) Find the average rate of change of f on the interval $-4 \le x \le 3$. There is no point c, -4 < c < 3, for which f'(c) is equal to that average rate of change. Explain why this statement does not contradict the Mean Value Theorem.

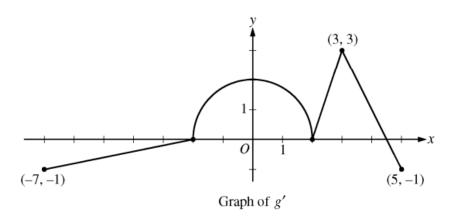
2010 Question #3 (Calculator OK!)...this is the only #3 in this packet which is Calculator OK...after 2010, the collegeboard switched the FRQ test to having 2 Calculator Questions (30 minutes), followed by 4 Non-Calculator Questions (60 minutes)



- 3. There are 700 people in line for a popular amusement-park ride when the ride begins operation in the morning. Once it begins operation, the ride accepts passengers until the park closes 8 hours later. While there is a line, people move onto the ride at a rate of 800 people per hour. The graph above shows the rate, r(t), at which people arrive at the ride throughout the day. Time t is measured in hours from the time the ride begins operation.
 - (a) How many people arrive at the ride between t = 0 and t = 3? Show the computations that lead to your answer.

(b) Is the number of people waiting in line to get on the ride increasing or decreasing between t = 2 and t = 3? Justify your answer.

(c)	At what time t is the line for the ride the longest? How many people are in line at that time? Justify your answers.
(4)	Write but do not calve an equation involving an integral arrangeion of a values calution gives the coalisat
(a)	Write, but do not solve, an equation involving an integral expression of r whose solution gives the earliest time t at which there is no longer a line for the ride.
	Area under the Curve FRQ



- 5. The function g is defined and differentiable on the closed interval [-7, 5] and satisfies g(0) = 5. The graph of y = g'(x), the derivative of g, consists of a semicircle and three line segments, as shown in the figure above.
 - (a) Find g(3) and g(-2).

(b) Find the x-coordinate of each point of inflection of the graph of y = g(x) on the interval -7 < x < 5. Explain your reasoning.

