

- 1. From 5 A.M. to 10 A.M., the rate at which vehicles arrive at a certain toll plaza is given by $A(t) = 450\sqrt{\sin(0.62t)}$, where t is the number of hours after 5 A.M. and A(t) is measured in vehicles per hour. Traffic is flowing smoothly at 5 A.M. with no vehicles waiting in line.
 - (a) Write, but do not evaluate, an integral expression that gives the total number of vehicles that arrive at the toll plaza from 6 A.M. (t = 1) to 10 A.M. (t = 5).

(b) Find the average value of the rate, in vehicles per hour, at which vehicles arrive at the toll plaza from 6 A.M. (t = 1) to 10 A.M. (t = 5). (c) Is the rate at which vehicles arrive at the toll plaza at 6 A.M. (t = 1) increasing or decreasing? Give a reason for your answer.

(d) A line forms whenever $A(t) \ge 400$. The number of vehicles in line at time t, for $a \le t \le 4$, is given by $N(t) = \int_{a}^{t} (A(x) - 400) dx$, where a is the time when a line first begins to form. To the nearest whole number, find the greatest number of vehicles in line at the toll plaza in the time interval $a \le t \le 4$. Justify your answer.

- 1. Fish enter a lake at a rate modeled by the function *E* given by $E(t) = 20 + 15 \sin\left(\frac{\pi t}{6}\right)$. Fish leave the lake at a rate modeled by the function *L* given by $L(t) = 4 + 2^{0.1t^2}$. Both E(t) and L(t) are measured in fish per hour, and *t* is measured in hours since midnight (*t* = 0).
 - (a) How many fish enter the lake over the 5-hour period from midnight (t = 0) to 5 A.M. (t = 5)? Give your answer to the nearest whole number.

(b) What is the average number of fish that leave the lake per hour over the 5-hour period from midnight (t = 0) to 5 A.M. (t = 5) ?

(c) At what time *t*, for $0 \le t \le 8$, is the greatest number of fish in the lake? Justify your answer.

(d) Is the rate of change in the number of fish in the lake increasing or decreasing at 5 A.M. (t = 5)? Explain your reasoning.

1. People enter a line for an escalator at a rate modeled by the function r given by

$$r(t) = \begin{cases} 44 \left(\frac{t}{100}\right)^3 \left(1 - \frac{t}{300}\right)^7 & \text{for } 0 \le t \le 300\\ 0 & \text{for } t > 300, \end{cases}$$

where r(t) is measured in people per second and t is measured in seconds. As people get on the escalator, they exit the line at a constant rate of 0.7 person per second. There are 20 people in line at time t = 0.

(a) How many people enter the line for the escalator during the time interval $0 \le t \le 300$?

(b) During the time interval $0 \le t \le 300$, there are always people in line for the escalator. How many people are in line at time t = 300 ?

(c) For t > 300, what is the first time t that there are no people in line for the escalator?

(d) For $0 \le t \le 300$, at what time *t* is the number of people in line a minimum? To the nearest whole number, find the number of people in line at this time. Justify your answer.

When a certain grocery store opens, it has 50 pounds of bananas on a display table. Customers remove bananas from the display table at a rate modeled by

$$f(t) = 10 + (0.8t) \sin\left(\frac{t^3}{100}\right)$$
 for $0 < t \le 12$,

where f(t) is measured in pounds per hour and t is the number of hours after the store opened. After the store has been open for three hours, store employees add bananas to the display table at a rate modeled by

$$g(t) = 3 + 2.4 \ln(t^2 + 2t)$$
 for $3 < t \le 12$,

where g(t) is measured in pounds per hour and t is the number of hours after the store opened.

(a) How many pounds of bananas are removed from the display table during the first 2 hours the store is open?

(b) Find f'(7). Using correct units, explain the meaning of f'(7) in the context of the problem.

(c) Is the number of pounds of bananas on the display table increasing or decreasing at time t = 5? Give a reason for your answer.

(d) How many pounds of bananas are on the display table at time t = 8?

1. The rate at which rainwater flows into a drainpipe is modeled by the function *R*, where $R(t) = 20\sin\left(\frac{t^2}{35}\right)$

cubic feet per hour, t is measured in hours, and $0 \le t \le 8$. The pipe is partially blocked, allowing water to drain out the other end of the pipe at a rate modeled by $D(t) = -0.04t^3 + 0.4t^2 + 0.96t$ cubic feet per hour, for $0 \le t \le 8$. There are 30 cubic feet of water in the pipe at time t = 0.

(a) How many cubic feet of rainwater flow into the pipe during the 8-hour time interval $0 \le t \le 8$?

(b) Is the amount of water in the pipe increasing or decreasing at time t = 3 hours? Give a reason for your answer.

(c) At what time $t, 0 \le t \le 8$, is the amount of water in the pipe at a minimum? Justify your answer.

(d) The pipe can hold 50 cubic feet of water before overflowing. For t > 8, water continues to flow into and out of the pipe at the given rates until the pipe begins to overflow. Write, but do not solve, an equation involving one or more integrals that gives the time *w* when the pipe will begin to overflow.

Contextual Rate of Change FRQ

Time—30 minutes Number of problems—2

A graphing calculator is required for these problems.

- 1. Grass clippings are placed in a bin, where they decompose. For $0 \le t \le 30$, the amount of grass clippings remaining in the bin is modeled by $A(t) = 6.687(0.931)^t$, where A(t) is measured in pounds and t is measured in days.
 - (a) Find the average rate of change of A(t) over the interval $0 \le t \le 30$. Indicate units of measure.

(b) Find the value of A'(15). Using correct units, interpret the meaning of the value in the context of the problem.

(c) Find the time t for which the amount of grass clippings in the bin is equal to the average amount of grass clippings in the bin over the interval $0 \le t \le 30$.

(d) For t > 30, L(t), the linear approximation to A at t = 30, is a better model for the amount of grass clippings remaining in the bin. Use L(t) to predict the time at which there will be 0.5 pound of grass clippings remaining in the bin. Show the work that leads to your answer.

1. On a certain workday, the rate, in tons per hour, at which unprocessed gravel arrives at a gravel processing plant is modeled by $G(t) = 90 + 45\cos\left(\frac{t^2}{18}\right)$, where t is measured in hours and $0 \le t \le 8$. At the beginning of the workday (t = 0), the plant has 500 tons of unprocessed gravel. During the hours of operation, $0 \le t \le 8$, the plant processes gravel at a constant rate of 100 tons per hour.

(a) Find G'(5). Using correct units, interpret your answer in the context of the problem.

(b) Find the total amount of unprocessed gravel that arrives at the plant during the hours of operation on this workday. (c) Is the amount of unprocessed gravel at the plant increasing or decreasing at time t = 5 hours? Show the work that leads to your answer.

(d) What is the maximum amount of unprocessed gravel at the plant during the hours of operation on this workday? Justify your answer.

A graphing calculator is required for these problems.

- 1. A cylindrical can of radius 10 millimeters is used to measure rainfall in Stormville. The can is initially empty, and rain enters the can during a 60-day period. The height of water in the can is modeled by the function S, where S(t) is measured in millimeters and t is measured in days for $0 \le t \le 60$. The rate at which the height of the water is rising in the can is given by $S'(t) = 2\sin(0.03t) + 1.5$.
 - (a) According to the model, what is the height of the water in the can at the end of the 60-day period?

(b) According to the model, what is the average rate of change in the height of water in the can over the 60-day period? Show the computations that lead to your answer. Indicate units of measure. (c) Assuming no evaporation occurs, at what rate is the volume of water in the can changing at time t = 7? Indicate units of measure.

(d) During the same 60-day period, rain on Monsoon Mountain accumulates in a can identical to the one in Stormville. The height of the water in the can on Monsoon Mountain is modeled by the function M, where $M(t) = \frac{1}{400} (3t^3 - 30t^2 + 330t)$. The height M(t) is measured in millimeters, and t is measured in days for $0 \le t \le 60$. Let D(t) = M'(t) - S'(t). Apply the Intermediate Value Theorem to the function D on the interval $0 \le t \le 60$ to justify that there exists a time t, 0 < t < 60, at which the heights of water in the two cans are changing at the same rate.

A graphing calculator is required for some problems or parts of problems.

1. There is no snow on Janet's driveway when snow begins to fall at midnight. From midnight to 9 A.M., snow accumulates on the driveway at a rate modeled by $f(t) = 7te^{\cos t}$ cubic feet per hour, where t is measured in hours since midnight. Janet starts removing snow at 6 A.M. (t = 6). The rate g(t), in cubic feet per hour, at which Janet removes snow from the driveway at time t hours after midnight is modeled by

$$g(t) = \begin{cases} 0 & \text{for } 0 \le t < 6\\ 125 & \text{for } 6 \le t < 7\\ 108 & \text{for } 7 \le t \le 9 \end{cases}.$$

(a) How many cubic feet of snow have accumulated on the driveway by 6 A.M.?

(b) Find the rate of change of the volume of snow on the driveway at 8 A.M.

(c) Let h(t) represent the total amount of snow, in cubic feet, that Janet has removed from the driveway at time t hours after midnight. Express h as a piecewise-defined function with domain $0 \le t \le 9$.

(d) How many cubic feet of snow are on the driveway at 9 A.M.?