

Differential Functions

(Separation of Variables)

FRQs
3. A bottle of milk is taken out of a refrigerator and placed in a pan of hot water to be warmed. The increasing function M models the temperature of the milk at time t, where $M(t)$ is measured in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ and t is the number of minutes since the bottle was placed in the pan. M satisfies the differential equation $\frac{d M}{d t}=\frac{1}{4}(40-M)$. At time $t=0$, the temperature of the milk is $5^{\circ} \mathrm{C}$. It can be shown that $M(t)<40$ for all values of t.
(a) A slope field for the differential equation $\frac{d M}{d t}=\frac{1}{4}(40-M)$ is shown. Sketch the solution curve through the point $(0,5)$.

(b) Use the line tangent to the graph of M at $t=0$ to approximate $M(2)$, the temperature of the milk at time $t=2$ minutes.
(c) Write an expression for $\frac{d^{2} M}{d t^{2}}$ in terms of M. Use $\frac{d^{2} M}{d t^{2}}$ to determine whether the approximation from part (b) is an underestimate or an overestimate for the actual value of $M(2)$. Give a reason for your answer.
(d) Use separation of variables to find an expression for $M(t)$, the particular solution to the differential equation $\frac{d M}{d t}=\frac{1}{4}(40-M)$ with initial condition $M(0)=5$.
5. Consider the differential equation $\frac{d y}{d x}=\frac{1}{2} \sin \left(\frac{\pi}{2} x\right) \sqrt{y+7}$. Let $y=f(x)$ be the particular solution to the differential equation with the initial condition $f(1)=2$. The function f is defined for all real numbers.
(a) A portion of the slope field for the differential equation is given below. Sketch the solution curve through the point $(1,2)$.

(b) Write an equation for the line tangent to the solution curve in part (a) at the point (1,2). Use the equation to approximate $f(0.8)$.
(c) It is known that $f^{\prime \prime}(x)>0$ for $-1 \leq x \leq 1$. Is the approximation found in part (b) an overestimate or an underestimate for $f(0.8)$? Give a reason for your answer.
(d) Use separation of variables to find $y=f(x)$, the particular solution to the differential equation $\frac{d y}{d x}=\frac{1}{2} \sin \left(\frac{\pi}{2} x\right) \sqrt{y+7}$ with the initial condition $f(1)=2$.
6. A medication is administered to a patient. The amount, in milligrams, of the medication in the patient at time t hours is modeled by a function $y=A(t)$ that satisfies the differential equation $\frac{d y}{d t}=\frac{12-y}{3}$. At time $t=0$ hours, there are 0 milligrams of the medication in the patient.
(a) A portion of the slope field for the differential equation $\frac{d y}{d t}=\frac{12-y}{3}$ is given below. Sketch the solution curve through the point $(0,0)$.

(b) Using correct units, interpret the statement $\lim _{t \rightarrow \infty} A(t)=12$ in the context of this problem.
(c) Use separation of variables to find $y=A(t)$, the particular solution to the differential equation $\frac{d y}{d t}=\frac{12-y}{3}$ with initial condition $A(0)=0$.
(d) A different procedure is used to administer the medication to a second patient. The amount, in milligrams, of the medication in the second patient at time t hours is modeled by a function $y=B(t)$ that satisfies the differential equation $\frac{d y}{d t}=3-\frac{y}{t+2}$. At time $t=1$ hour, there are 2.5 milligrams of the medication in the second patient. Is the rate of change of the amount of medication in the second patient increasing or decreasing at time $t=1$? Give a reason for your answer.

4. A cylindrical barrel with a diameter of 2 feet contains collected rainwater, as shown in the figure above. The water drains out through a valve (not shown) at the bottom of the barrel. The rate of change of the height h of the water in the barrel with respect to time t is modeled by $\frac{d h}{d t}=-\frac{1}{10} \sqrt{h}$, where h is measured in feet and t is measured in seconds. (The volume V of a cylinder with radius r and height h is $V=\pi r^{2} h$.)
(a) Find the rate of change of the volume of water in the barrel with respect to time when the height of the water is 4 feet. Indicate units of measure.
(b) When the height of the water is 3 feet, is the rate of change of the height of the water with respect to time increasing or decreasing? Explain your reasoning.
(c) At time $t=0$ seconds, the height of the water is 5 feet. Use separation of variables to find an expression for h in terms of t.
6. Consider the differential equation $\frac{d y}{d x}=\frac{1}{3} x(y-2)^{2}$.
(a) A slope field for the given differential equation is shown below. Sketch the solution curve that passes through the point $(0,2)$, and sketch the solution curve that passes through the point $(1,0)$.

(b) Let $y=f(x)$ be the particular solution to the given differential equation with initial condition $f(1)=0$. Write an equation for the line tangent to the graph of $y=f(x)$ at $x=1$. Use your equation to approximate $f(0.7)$.
(c) Find the particular solution $y=f(x)$ to the given differential equation with initial condition $f(1)=0$.

2017 AP $^{\oplus}$ CALCULUS AB FREE-RESPONSE QUESTIONS

4. At time $t=0$, a boiled potato is taken from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91 degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ at time $t=0$, and the internal temperature of the potato is greater than $27^{\circ} \mathrm{C}$ for all times $t>0$. The internal temperature of the potato at time t minutes can be modeled by the function H that satisfies the differential equation $\frac{d H}{d t}=-\frac{1}{4}(H-27)$, where $H(t)$ is measured in degrees Celsius and $H(0)=91$.
(a) Write an equation for the line tangent to the graph of H at $t=0$. Use this equation to approximate the internal temperature of the potato at time $t=3$.
(b) Use $\frac{d^{2} H}{d t^{2}}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the internal temperature of the potato at time $t=3$.
(c) For $t<10$, an alternate model for the internal temperature of the potato at time t minutes is the function G that satisfies the differential equation $\frac{d G}{d t}=-(G-27)^{2 / 3}$, where $G(t)$ is measured in degrees Celsius and $G(0)=91$. Find an expression for $G(t)$. Based on this model, what is the internal temperature of the potato at time $t=3$?

2016 AP $^{\oplus}$ CALCULUS AB FREE-RESPONSE QUESTIONS

4. Consider the differential equation $\frac{d y}{d x}=\frac{y^{2}}{x-1}$.
(a) On the axes provided, sketch a slope field for the given differential equation at the six points indicated.

(b) Let $y=f(x)$ be the particular solution to the given differential equation with the initial condition $f(2)=3$. Write an equation for the line tangent to the graph of $y=f(x)$ at $x=2$.
(c) Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(2)=3$.

2015 AP ${ }^{\oplus}$ CALCULUS AB FREE-RESPONSE QUESTIONS

4. Consider the differential equation $\frac{d y}{d x}=2 x-y$.
(a) On the axes provided, sketch a slope field for the given differential equation at the six points indicated.

(b) Find $\frac{d^{2} y}{d x^{2}}$ in terms of x and y. Determine the concavity of all solution curves for the given differential equation in Quadrant II. Give a reason for your answer.
(c) Let $y=f(x)$ be the particular solution to the differential equation with the initial condition $f(2)=3$. Does f have a relative minimum, a relative maximum, or neither at $x=2$? Justify your answer.
(d) Find the values of the constants m and b for which $y=m x+b$ is a solution to the differential equation.

2015 AP $^{\oplus}$ CALCULUS AB FREE-RESPONSE QUESTIONS

6. Consider the curve given by the equation $y^{3}-x y=2$. It can be shown that $\frac{d y}{d x}=\frac{y}{3 y^{2}-x}$.
(a) Write an equation for the line tangent to the curve at the point $(-1,1)$.
(b) Find the coordinates of all points on the curve at which the line tangent to the curve at that point is vertical.
(c) Evaluate $\frac{d^{2} y}{d x^{2}}$ at the point on the curve where $x=-1$ and $y=1$.

2014 AP ${ }^{\oplus}$ CALCULUS AB FREE-RESPONSE QUESTIONS

6. Consider the differential equation $\frac{d y}{d x}=(3-y) \cos x$. Let $y=f(x)$ be the particular solution to the differential equation with the initial condition $f(0)=1$. The function f is defined for all real numbers.
(a) A portion of the slope field of the differential equation is given below. Sketch the solution curve through the point $(0,1)$.

(b) Write an equation for the line tangent to the solution curve in part (a) at the point $(0,1)$. Use the equation to approximate $f(0.2)$.
(c) Find $y=f(x)$, the particular solution to the differential equation with the initial condition $f(0)=1$.

2013 AP ${ }^{\text {º }}$ CALCULUS AB FREE-RESPONSE QUESTIONS

6. Consider the differential equation $\frac{d y}{d x}=e^{y}\left(3 x^{2}-6 x\right)$. Let $y=f(x)$ be the particular solution to the differential equation that passes through $(1,0)$.
(a) Write an equation for the line tangent to the graph of f at the point $(1,0)$. Use the tangent line to approximate $f(1.2)$.
(b) Find $y=f(x)$, the particular solution to the differential equation that passes through $(1,0)$.

2012 AP ${ }^{\oplus}$ CALCULUS AB FREE-RESPONSE QUESTIONS

5. The rate at which a baby bird gains weight is proportional to the difference between its adult weight and its current weight. At time $t=0$, when the bird is first weighed, its weight is 20 grams . If $B(t)$ is the weight of the bird, in grams, at time t days after it is first weighed, then

$$
\frac{d B}{d t}=\frac{1}{5}(100-B) .
$$

Let $y=B(t)$ be the solution to the differential equation above with initial condition $B(0)=20$.
(a) Is the bird gaining weight faster when it weighs 40 grams or when it weighs 70 grams? Explain your reasoning.
(b) Find $\frac{d^{2} B}{d t^{2}}$ in terms of B. Use $\frac{d^{2} B}{d t^{2}}$ to explain why the graph of B cannot resemble the following graph.

(c) Use separation of variables to find $y=B(t)$, the particular solution to the differential equation with initial condition $B(0)=20$.
5. At the beginning of 2010 , a landfill contained 1400 tons of solid waste. The increasing function W models the total amount of solid waste stored at the landfill. Planners estimate that W will satisfy the differential equation $\frac{d W}{d t}=\frac{1}{25}(W-300)$ for the next 20 years. W is measured in tons, and t is measured in years from the start of 2010.
(a) Use the line tangent to the graph of W at $t=0$ to approximate the amount of solid waste that the landfill contains at the end of the first 3 months of 2010 (time $t=\frac{1}{4}$).
(b) Find $\frac{d^{2} W}{d t^{2}}$ in terms of W. Use $\frac{d^{2} W}{d t^{2}}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the amount of solid waste that the landfill contains at time $t=\frac{1}{4}$.
(c) Find the particular solution $W=W(t)$ to the differential equation $\frac{d W}{d t}=\frac{1}{25}(W-300)$ with initial condition $W(0)=1400$.
6. Solutions to the differential equation $\frac{d y}{d x}=x y^{3}$ also satisfy $\frac{d^{2} y}{d x^{2}}=y^{3}\left(1+3 x^{2} y^{2}\right)$. Let $y=f(x)$ be a particular solution to the differential equation $\frac{d y}{d x}=x y^{3}$ with $f(1)=2$.
(a) Write an equation for the line tangent to the graph of $y=f(x)$ at $x=1$.
(b) Use the tangent line equation from part (a) to approximate $f(1.1)$. Given that $f(x)>0$ for $1<x<1.1$, is the approximation for $f(1.1)$ greater than or less than $f(1.1)$? Explain your reasoning.
(c) Find the particular solution $y=f(x)$ with initial condition $f(1)=2$.

