A.P. Statistics

Super Fun

Book of FRQ's

This page (table of contents)..	page 2
Released Q's given each year (2010-2018)...	page 3
How to use this book / info on AP test..	page 3
Additional FRQ questions (from before 2010)..	page 4
Formula Sheet (same as will be provided on AP Test)..	pages 5-7
Allosaurus...	page 8

Formula Sheet (formulas provided on AP w/room for explanatory notes) \qquad

Unit 1 - Chps 1 \& 2 - Displaying and Describing Data / Distributions

Unit 2 - Chp 4 - Designing Studies/experiments. \qquad pages 31-40

Unit 3 - Chp 7 \& 8 - Sample Distributions

\qquad pages 41-56

Unit 4-Chp 3 \& 12 - Describing Relationships. \qquad pages 57-66

Unit 5 - Chp 5 \& 6 - Probability and Random Variables. \qquad

Unit 6 \& 7 - Chp 9, 10 \& 11 - Inference Methods. \qquad pages 89-114

Unit "Question 6's" - All chapters - could be anything. \qquad

Tables (z-table, t-table, x^{2}-table), same as will be provided on AP Test.

Released AP Questions given each year....arranged by FRQ style and by year
Statistics FRQ's

Released (Actual FRQ's Taken by students in the AP exam)										
Question / Year	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
1	Regression Lines (Chp 3 \&12)	Describing and DisplayingData (chp 1 \& 2)	Describing and DisplayingData (chp 1 \& 2)	Sample Distributions (Chp 7 \& 8)	Describing and DisplayingData (chp 1 \& 2)	Describing and DisplayingData (chp 1 \& 2)	Describing and DisplayingData (chp 1 \& 2)	Regression Lines (Chp 3 \&12)	Regression Lines (Chp 3 \& 12)	Describing and DisplayingData (chp 1 \& 2)
2	Sample Distributions (Chp 7 \& 8)	Probability and Random Variables (chapter 5 \& 6)	Probability and Random Variables (chapter 5 \& 6)	Designing Studies (Chapter 4)	Probability and Random Variables (chapter 5 \& 6)	Sample Distributions (Chp 7 \& 8)	Inference Methods (Chp 9-11)	Sample Distributions (Chp 7 \& 8)	Sample Distributions (Chp 7 \& 8)	Designing Studies (Chapter 4)
3	Sample Distributions (Chp 7 \& 8)	Designing Studies (Chapter 4)	Inference Methods (Chp 9-11)	Probability and Random Variables (chapter 5 \& 6)	Sample Distributions (Chp 7 \& 8)	Probability and Random Variables (chapter 5 \& 6)	Designing Studies (Chapter 4)	Probability and Random Variables (chapter 5 \& 6)	Probability and Random Variables (chapter 5 \& 6)	Probability and Random Variables (chapter 5 \& 6)
4	Probability and Random Variables (chapter 5 \& 6)	Inference Methods (Chp 9-11)	Inference Methods (Chp 9-11)	Inference Methods (Chp 9-11)	Designing Studies (Chapter 4)	Inference Methods (Chp 9-11)	Probability and Random Variables (chapter 5 \& 6)	Describing and DisplayingData (chp 1 \& 2)	Inference Methods (Chp 9-11)	Inference Methods (Chp 9-11)
5	Inference Methods (Chp 9-11)	Regression Lines (Chp 3 \&12)	Inference Methods (Chp 9-11)	Inference Methods (Chp 9-11)	Inference Methods (Chp 9-11)	Regression Lines (Chp 3 \&12)	Sample Distributions (Chp 7 \& 8)	Inference Methods (Chp 9-11)	Describing and DisplayingData (chp 1 \& 2)	Probability and Random Variables (chapter 5 \& 6)
6	Question 6 (all chapters)									

How to use this to ensure an awesome AP score in May

The following are all suggestions:

1) Complete $E A C H$ problem at least one time throughout the year.
2) Use the scoring documents to score your work (use a DIFFERENT COLOR...this way you will remember when looking back through the booklet which questions you may have had more difficulty with). Scoring documents can be found at the collegeboard.com website (there is a link on scubamoose)
3) Study the scoring documents to get a feel for how E,P \& I's will be awarded on the different parts of the FRQ's
4) Search out video solutions by googling A.P. Statistics / (the year) / (the question number). There is likely to be multiple video solutions for each. While I cannot attest to the quality or even the correctness of these websites, I have yet to see one posted which has blatantly incorrect work demonstrated.
5) For those style questions you have struggled with the most...do additional questions from years prior to the year 2010.
6) Try at least a few of each question style BY YOURSELF. It is important for you to know what you are able to do on your own and not always in a group setting (obviously the AP test will be done solo).
7) Review the textbook connected to the different style questions. The text has a collection of sample FRQ's...FRAPPY's...at the end of each unit.
8) Enjoy the challenge these questions present. More difficulty will bring a higher sense of reward and satisfaction.

Additional questions for each question style (prior to 2010...including 2010 and 2011 B versions). All the questions and the scoring documents can be found on the collegeboard.com website which can be accessed through scubamoose

Chp 1 specific: $\quad 2011 B-1,2010 B-1,2007 B-1,2006-1,2005 B-1,2004-1,2002 B-5,2001-1,2000-3$
Chp 2 specific: $\quad 2009 B-1,2008-1,2006 B-1,1997-1$

Unit 2 FRQ's (taken in $\mathbf{2}^{\text {nd }}$ semester during the $\mathbf{2 b}$ unit) - Designing Studies - Chapter 4 predominantly
Chp 4 specific: $\quad 2011 B-2,2010 B-2,2009-3,2008-2,2007-2,2007 B-3,2006-5,2006 B-5,2005-1$
2004-2, 2004B-2, 2003-4, 2002-2, 2002B-3, 2001-4, 2000-5, 1999-3 1997-2

Unit 3 FRQ's - Sample Distributions - Chapters 7 \& 8
Chp 7 specific: $\quad 2009-2,2008 B-2,2007-3,2007 B-2,2006-3,2004 B-3,1998-1$
Chp 8 specific: $\quad 2011 B-5,2010 B-4,2008 B-3,2005-5,2003-6^{*}, 2003 B-6 *, 2002-1$
2002B-4, 2000-2, 200B-6

Unit 4 FRQ's - Describe Relationships - Chapters 3 \& 12

Chp 3 specific: $\quad 2007 B-4,2005-3,2003 B-1,2002-4,2002 B-1,2000-1,1999-1,1998-2,1998-4$
Chp 12 specific: 2011B-6*, 2010B-6*, 2008-6*, 2007-6*, 2007B-6*, 2006-2, 2006-2, 2005B-5 2004B-1, 2001-6*, 1997-6*

Unit 5 FRQ's - Probability and Random Variables - Chapters 5 \& 6

Chp 5 specific: $\quad 2009 B-2,2003 B-2,2001-3,1997-3$
Chp 6 specific: $\quad 2011 B-3,2010 B-3,2008-3,2008 B-5,2006 B-3,2005-2,2005 B-2,2004-3,2004-4$
2003-3, 2002-3, 2002B-2, 2001-2, 1999-4, 1999-5, 1998-6*

Unit 6 and 7 - Inference Methods - Chapters 9, 10 \& 11

Chp 9 specific (one sample, means of differences)

$$
\begin{aligned}
& 2009-6^{*}, 2009 B-4,2009 B-5,2008 B-4,2008 B-6^{*}, 2007-4,2006 B-4,206 B-6^{*} \\
& 2005-4,2005 B-4,2005 B-6^{*}, 2004-6^{*}, 2003-1,2003-2,2001-5,1999-6^{*}, 1998-5,1997-5
\end{aligned}
$$

Chp 10 specific (two sample)
2009-4, 2009-5, 2009B-3, 2009B-6*, 2008-4, 2008B-1, 2007-1, 2007-5, 2007B-5, 2006-4, 2006B-2
2005-6*, 2005B-3, 2004B-4, 2004B-5, 2004B-6, 2003B-3, 2003B-4, 2002-5, 2002-6*, 2000-4, 1997-4

Chp 11 specific (chi-sq)

$2011 \mathrm{~B}-4,2010 \mathrm{~B}-5,2009-1,2008-5,2006-6^{*}, 2004-5,2003-5,2003 B-5,2002 B-6^{*}, 1999-2,1998-3$

Formulas following on next 3 pages are the same as given on the AP exam (at the beginning of both the MC and FRQ)

Formulas

(I) Descriptive Statistics
$\bar{x}=\frac{\sum x_{i}}{n}$
$s_{x}=\sqrt{\frac{1}{n-1} \Sigma\left(x_{i}-\bar{x}\right)^{2}}$
$s_{p}=\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)}}$
$\hat{y}=b_{0}+b_{1} x$
$b_{1}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}$
$b_{0}=\bar{y}-b_{1} \bar{x}$
$r=\frac{1}{n-1} \Sigma\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right)$
$b_{1}=r \frac{s_{y}}{s_{x}}$
$s_{b_{1}}=\frac{\sqrt{\frac{\Sigma\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}}}{\sqrt{\Sigma\left(x_{i}-\bar{x}\right)^{2}}}$
(II) Probability

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
$E(X)=\mu_{x}=\sum x_{i} p_{i}$
$\operatorname{Var}(X)=\sigma_{x}^{2}=\Sigma\left(x_{i}-\mu_{x}\right)^{2} p_{i}$

If X has a binomial distribution with parameters n and p, then:

$$
\begin{aligned}
& P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
& \mu_{x}=n p \\
& \sigma_{x}=\sqrt{n p(1-p)} \\
& \mu_{\hat{p}}=p \\
& \sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}
\end{aligned}
$$

If \bar{x} is the mean of a random sample of size n from an infinite population with mean μ and standard deviation σ, then:

$$
\begin{aligned}
& \mu_{\bar{x}}=\mu \\
& \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
\end{aligned}
$$

(III) Inferential Statistics

Standardized test statistic: $\frac{\text { statistic - parameter }}{\text { standard deviation of statistic }}$
Confidence interval: statistic \pm (critical value) •(standard deviation of statistic)

Single-Sample

Statistic	Standard Deviation of Statistic
Sample Mean	$\frac{\sigma}{\sqrt{n}}$
Sample Proportion	$\sqrt{\frac{p(1-p)}{n}}$

Two-Sample

Statistic	Standard Deviation
Difference of sample means	$\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$
Special case when $\sigma_{1}=\sigma_{2}$	
Difference of sample proportions	$\frac{\sigma_{1}}{n_{1}}+\frac{1}{n_{2}}$ n_{1}
Special case when $p_{1}=p_{2}$ n_{2}	
$\sqrt{p(1-p)} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}$	
Chi-square test statistic $=\sum \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}$	

Did you know:
Your teacher's favorite dinosaur as a $\mathbf{2}^{\text {nd }}$ grader was the Allosaurus
One of their favorite meals was stegosaurus
Their favorite color was Orange

This is the same Formula sheet as the previous page...just spaced out to allow for explanatory/clarifying notes:
(I) Descriptive Statistics
$\bar{x}=\frac{\sum x_{i}}{n}$
$s_{x}=\sqrt{\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)^{2}}$
$s_{p}=\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)}}$
$\hat{y}=b_{0}+b_{1} x$
$b_{1}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}$

$$
b_{0}=\bar{y}-b_{1} \bar{x}
$$

$$
r=\frac{1}{n-1} \Sigma\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right)
$$

$$
b_{1}=r \frac{s_{y}}{s_{x}}
$$

$$
s_{b_{1}}=\frac{\sqrt{\frac{\sum\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}}}{\sqrt{\Sigma\left(x_{i}-\bar{x}\right)^{2}}}
$$

(II) Probability
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

$E(X)=\mu_{x}=\sum x_{i} p_{i}$
$\operatorname{Var}(X)=\sigma_{x}^{2}=\Sigma\left(x_{i}-\mu_{x}\right)^{2} p_{i}$

If X has a binomial distribution with parameters n and p, then:

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

$$
\mu_{x}=n p
$$

$$
\sigma_{x}=\sqrt{n p(1-p)}
$$

$$
\mu_{\hat{p}}=p
$$

$\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}$

If \bar{x} is the mean of a random sample of size n from an infinite population with mean μ and standard deviation σ, then:
$\mu_{\bar{x}}=\mu$

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
$$

(III) Inferential Statistics

Standardized test statistic: $\frac{\text { statistic - parameter }}{\text { standard deviation of statistic }}$

Confidence interval: statistic \pm (critical value) $\cdot($ standard deviation of statistic)

Single-Sample

Statistic	Standard Deviation of Statistic
Sample Mean	$\frac{\sigma}{\sqrt{n}}$
Sample Proportion	$\sqrt{\frac{p(1-p)}{n}}$

Two-Sample
$\left.\begin{array}{|c|c|}\hline \text { Statistic } & \text { Standard Deviation } \\ \hline \begin{array}{c}\text { Difference of } \\ \text { sample means }\end{array} & \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} \\ \hline \begin{array}{c}\text { Difference of } \\ \text { sample proportions }\end{array} & \sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}} \\ & \text { Special case when } \sigma_{1}=\sigma_{2} \\ \frac{1}{n_{1}}+\frac{1}{n_{2}}\end{array}\right] \sqrt{p(1-p)} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}$.

Chi-square test statistic $=\sum \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}$

Spend about 1 hour and 5 minutes on this part of the exam.
 Percent of Section II score- 75

Directions: Show all your work. Indicate clearly the methods you use, because you will be scored on the correctness of your methods as well as on the accuracy and completeness of your results and explanations.

1. The sizes, in square feet, of the 20 rooms in a student residence hall at a certain university are summarized in the following histogram.

(a) Based on the histogram, write a few sentences describing the distribution of room size in the residence hall.
(b) Summary statistics for the sizes are given in the following table.

Mean	Standard Deviation	Min	Q1	Median	Q3	Max
231.4	68.12	134	174	253.5	292	315

Determine whether there are potential outliers in the data. Then use the following grid to sketch a boxplot of room size.

(c) What characteristic of the shape of the distribution of room size is apparent from the histogram but not from the boxplot?
5. The following histograms summarize the teaching year for the teachers at two high schools, A and B.

Teaching year is recorded as an integer, with first-year teachers recorded as 1 , second-year teachers recorded as 2, and so on. Both sets of data have a mean teaching year of 8.2, with data recorded from 200 teachers at High School A and 221 teachers at High School B. On the histograms, each interval represents possible integer values from the left endpoint up to but not including the right endpoint.
(a) The median teaching year for one high school is 6 , and the median teaching year for the other high school is 7. Identify which high school has each median and justify your answer.
(b) An additional 18 teachers were not included with the data recorded from the 200 teachers at High School A. The mean teaching year of the 18 teachers is 2.5. What is the mean teaching year for all 218 teachers at High School A?
(c) The standard deviation of the teaching year for the 221 teachers at High School B is 7.2. If one teacher is selected at random from High School B, what is the probability that the teaching year for the selected teacher will be within 1 standard deviation of the mean of 8.2 ? Justify your answer.
4. The chemicals in clay used to make pottery can differ depending on the geographical region where the clay originated. Sometimes, archaeologists use a chemical analysis of clay to help identify where a piece of pottery originated. Such an analysis measures the amount of a chemical in the clay as a percent of the total weight of the piece of pottery. The boxplots below summarize analyses done for three chemicals-X,Y, and Z-on pieces of pottery that originated at one of three sites: I, II, or III.

(a) For chemical Z, describe how the percents found in the pieces of pottery are similar and how they differ among the three sites.
(b) Consider a piece of pottery known to have originated at one of the three sites, but the actual site is not known.
(i) Suppose an analysis of the clay reveals that the sum of the percents of the three chemicals X, Y, and Z is 20.5%. Based on the boxplots, which site-I, II, or III-is the most likely site where the piece of pottery originated? Justify your choice.
(ii) Suppose only one chemical could be analyzed in the piece of pottery. Which chemical-X, Y, or Zwould be the most useful in identifying the site where the piece of pottery originated? Justify your choice.

1. Robin works as a server in a small restaurant, where she can earn a tip (extra money) from each customer she serves. The histogram below shows the distribution of her 60 tip amounts for one day of work.

(a) Write a few sentences to describe the distribution of tip amounts for the day shown.
(b) One of the tip amounts was $\$ 8$. If the $\$ 8$ tip had been $\$ 18$, what effect would the increase have had on the following statistics? Justify your answers.
The mean:

The median:

Spend about 65 minutes on this part of the exam. Percent of Section II score-75

Directions: Show all your work. Indicate clearly the methods you use, because you will be scored on the correctness of your methods as well as on the accuracy and completeness of your results and explanations.

1. Two large corporations, A and B , hire many new college graduates as accountants at entry-level positions. In 2009 the starting salary for an entry-level accountant position was $\$ 36,000$ a year at both corporations. At each corporation, data were collected from 30 employees who were hired in 2009 as entry-level accountants and were still employed at the corporation five years later. The yearly salaries of the 60 employees in 2014 are summarized in the boxplots below.

(a) Write a few sentences comparing the distributions of the yearly salaries at the two corporations.
(b) Suppose both corporations offered you a job for $\$ 36,000$ a year as an entry-level accountant.
(i) Based on the boxplots, give one reason why you might choose to accept the job at corporation A.
(ii) Based on the boxplots, give one reason why you might choose to accept the job at corporation B.
2. An administrator at a large university is interested in determining whether the residential status of a student is associated with level of participation in extracurricular activities. Residential status is categorized as on campus for students living in university housing and off campus otherwise. A simple random sample of 100 students in the university was taken, and each student was asked the following two questions.

- Are you an on campus student or an off campus student?
- In how many extracurricular activities do you participate?

The responses of the 100 students are summarized in the frequency table shown.

	Residential Status		
Level of Participation in Extracurricular Activities	On campus	Off campus	Total
No activities	9	30	39
One activity	17	25	42
Two or more activities	7	12	19
Total	33	67	100

(a) Calculate the proportion of on campus students in the sample who participate in at least one extracurricular activity and the proportion of off campus students in the sample who participate in at least one extracurricular activity.
On campus proportion:

Off campus proportion:

The responses of the 100 students are summarized in the segmented bar graph shown.

(b) Write a few sentences summarizing what the graph reveals about the association between residential status and level of participation in extracurricular activities among the 100 students in the sample.
(c) After verifying that the conditions for inference were satisfied, the administrator performed a chi-square test of the following hypotheses.
H_{0} : There is no association between residential status and level of participation in extracurricular activities among the students at the university.
H_{a} : There is an association between residential status and level of participation in extracurricular activities among the students at the university.

The test resulted in a p-value of 0.23 . Based on the p-value, what conclusion should the administrator make?

Part A
 Questions 1-5
 Spend about 65 minutes on this part of the exam.
 Percent of Section II score-75

Directions: Show all your work. Indicate clearly the methods you use, because you will be scored on the correctness of your methods as well as on the accuracy and completeness of your results and explanations.

1. The scatterplot below displays the price in dollars and quality rating for 14 different sewing machines.

(a) Describe the nature of the association between price and quality rating for the sewing machines.
(b) One of the 14 sewing machines substantially affects the appropriateness of using a linear regression model to predict quality rating based on price. Report the approximate price and quality rating of that machine and explain your choice.
(c) Chris is interested in buying one of the 14 sewing machines. He will consider buying only those machines for which there is no other machine that has both higher quality and lower price. On the scatterplot reproduced below, circle all data points corresponding to machines that Chris will consider buying.

Part A
 Questions 1-5
 Spend about 65 minutes on this part of the exam.
 Percent of Section II score-75

Directions: Show all your work. Indicate clearly the methods you use, because you will be scored on the correctness of your methods as well as on the accuracy and completeness of your results and explanations.

1. A professional sports team evaluates potential players for a certain position based on two main characteristics, speed and strength.
(a) Speed is measured by the time required to run a distance of 40 yards, with smaller times indicating more desirable (faster) speeds. From previous speed data for all players in this position, the times to run 40 yards have a mean of 4.60 seconds and a standard deviation of 0.15 seconds, with a minimum time of 4.40 seconds, as shown in the table below.

	Mean	Standard Deviation	Minimum
Time to run 40 yards	4.60 seconds	0.15 seconds	4.40 seconds

Based on the relationship between the mean, standard deviation, and minimum time, is it reasonable to believe that the distribution of 40 -yard running times is approximately normal? Explain.
(b) Strength is measured by the amount of weight lifted, with more weight indicating more desirable (greater) strength. From previous strength data for all players in this position, the amount of weight lifted has a mean of 310 pounds and a standard deviation of 25 pounds, as shown in the table below.

	Mean	Standard Deviation
Amount of weight lifted	310 pounds	25 pounds

Calculate and interpret the z-score for a player in this position who can lift a weight of 370 pounds.
(c) The characteristics of speed and strength are considered to be of equal importance to the team in selecting a player for the position. Based on the information about the means and standard deviations of the speed and strength data for all players and the measurements listed in the table below for Players A and B, which player should the team select if the team can only select one of the two players? Justify your answer.

	Player A	Player B
Time to run 40 yards	4.42 seconds	4.57 seconds
Amount of weight lifted	370 pounds	375 pounds

2. Researchers are investigating the effectiveness of using a fungus to control the spread of an insect that destroys trees. The researchers will create four different concentrations of fungus mixtures: 0 milliliters per liter (ml / L), $1.25 \mathrm{ml} / \mathrm{L}, 2.5 \mathrm{ml} / \mathrm{L}$, and $3.75 \mathrm{ml} / \mathrm{L}$. An equal number of the insects will be placed into 20 individual containers. The group of insects in each container will be sprayed with one of the four mixtures, and the researchers will record the number of insects that are still alive in each container one week after spraying.
(a) Identify the treatments, experimental units, and response variable of the experiment.

Treatments:
Experimental units:
Response variable:
(b) Does the experiment have a control group? Explain your answer.
(c) Describe how the treatments can be randomly assigned to the experimental units so that each treatment has the same number of units.
3. Alzheimer's disease results in a loss of cognitive ability beyond what is expected with typical aging. A local newspaper published an article with the following headline.

Study Finds Strong Association Between Smoking and Alzheimer's

The article reported that a study tracked the medical histories of 21,123 men and women for 23 years. The article stated that, for those who smoked at least two packs of cigarettes a day, the risk of developing Alzheimer's disease was 2.57 times the risk for those who did not smoke.
(a) Identify the explanatory and response variables in the study.

Explanatory variable:

Response variable:
(b) Is the study described in the article an observational study or an experiment? Explain.
(c) Exercise status (regular weekly exercise versus no regular weekly exercise) was mentioned in the article as a possible confounding variable. Explain how exercise status could be a confounding variable in the study.
4. As part of its twenty-fifth reunion celebration, the class of 1988 (students who graduated in 1988) at a state university held a reception on campus. In an informal survey, the director of alumni development asked 50 of the attendees about their incomes. The director computed the mean income of the 50 attendees to be $\$ 189,952$. In a news release, the director announced, "The members of our class of 1988 enjoyed resounding success. Last year's mean income of its members was $\$ 189,952$!"
(a) What would be a statistical advantage of using the median of the reported incomes, rather than the mean, as the estimate of the typical income?
(b) The director felt the members who attended the reception may be different from the class as a whole. A more detailed survey of the class was planned to find a better estimate of the income as well as other facts about the alumni. The staff developed two methods based on the available funds to carry out the survey.

Method 1: Send out an e-mail to all 6,826 members of the class asking them to complete an online form. The staff estimates that at least 600 members will respond.

Method 2: Select a simple random sample of members of the class and contact the selected members directly by phone. Follow up to ensure that all responses are obtained. Because method 2 will require more time than method 1 , the staff estimates that only 100 members of the class could be contacted using method 2 .

Which of the two methods would you select for estimating the average yearly income of all 6,826 members of the class of 1988 ? Explain your reasoning by comparing the two methods and the effect of each method on the estimate.
2. An administrator at a large university wants to conduct a survey to estimate the proportion of students who are satisfied with the appearance of the university buildings and grounds. The administrator is considering three methods of obtaining a sample of 500 students from the 70,000 students at the university.
(a) Because of financial constraints, the first method the administrator is considering consists of taking a convenience sample to keep the expenses low. A very large number of students will attend the first football game of the season, and the first 500 students who enter the football stadium could be used as a sample. Why might such a sampling method be biased in producing an estimate of the proportion of students who are satisfied with the appearance of the buildings and grounds?
(b) Because of the large number of students at the university, the second method the administrator is considering consists of using a computer with a random number generator to select a simple random sample of 500 students from a list of 70,000 student names. Describe how to implement such a method.
(c) Because stratification can often provide a more precise estimate than a simple random sample, the third method the administrator is considering consists of selecting a stratified random sample of 500 students. The university has two campuses with male and female students at each campus. Under what circumstance(s) would stratification by campus provide a more precise estimate of the proportion of students who are satisfied with the appearance of the university buildings and grounds than stratification by gender?
3. An apartment building has nine floors and each floor has four apartments. The building owner wants to install new carpeting in eight apartments to see how well it wears before she decides whether to replace the carpet in the entire building.
The figure below shows the floors of apartments in the building with their apartment numbers. Only the nine apartments indicated with an asterisk (*) have children in the apartment.

(a) For convenience, the apartment building owner wants to use a cluster sampling method, in which the floors are clusters, to select the eight apartments. Describe a process for randomly selecting eight different apartments using this method.
(b) An alternative sampling method would be to select a stratified random sample of eight apartments, where the strata are apartments with children and apartments with no children. A stratified random sample of size eight might include two randomly selected apartments with children and six randomly selected apartments with no children. In the context of this situation, give one statistical advantage of selecting such a stratified sample as opposed to a cluster sample of eight apartments using the floors as clusters.
2. An environmental science teacher at a high school with a large population of students wanted to estimate the proportion of students at the school who regularly recycle plastic bottles. The teacher selected a random sample of students at the school to survey. Each selected student went into the teacher's office, one at a time, and was asked to respond yes or no to the following question.

Do you regularly recycle plastic bottles?

Based on the responses, a 95 percent confidence interval for the proportion of all students at the school who would respond yes to the question was calculated as $(0.584,0.816)$.
(a) How many students were in the sample selected by the environmental science teacher?
(b) Given the method used by the environmental science teacher to collect the responses, explain how bias might have been introduced and describe how the bias might affect the point estimate of the proportion of all students at the school who would respond yes to the question.
(c) The statistics teacher at the high school was concerned about the potential bias in the survey. To obtain a potentially less biased estimate of the proportion, the statistics teacher used an alternate method for collecting student responses. A random sample of 300 students was selected, and each student was given the following instructions on how to respond to the question.

- In private, flip a fair coin.
- If heads, you must respond no, regardless of whether you regularly recycle.
- If tails, please truthfully respond yes or no.
(i) What is the expected number of students from the sample of 300 who would be required to respond no because the coin flip resulted in heads?
(ii) The results of the sample showed that 213 of the 300 selected students responded no. Based on the results of the sample, give a point estimate for the proportion of all students at the high school who would respond yes to the question.

2. The manager of a local fast-food restaurant is concerned about customers who ask for a water cup when placing an order but fill the cup with a soft drink from the beverage fountain instead of filling the cup with water. The manager selected a random sample of 80 customers who asked for a water cup when placing an order and found that 23 of those customers filled the cup with a soft drink from the beverage fountain.
(a) Construct and interpret a 95 percent confidence interval for the proportion of all customers who, having asked for a water cup when placing an order, will fill the cup with a soft drink from the beverage fountain.
(b) The manager estimates that each customer who asks for a water cup but fills it with a soft drink costs the restaurant $\$ 0.25$. Suppose that in the month of June 3,000 customers ask for a water cup when placing an order. Use the confidence interval constructed in part (a) to give an interval estimate for the cost to the restaurant for the month of June from the customers who ask for a water cup but fill the cup with a soft drink.
3. A polling agency showed the following two statements to a random sample of 1,048 adults in the United States.

Environment statement: Protection of the environment should be given priority over economic growth.
Economy statement: Economic growth should be given priority over protection of the environment.

The order in which the statements were shown was randomly selected for each person in the sample. After reading the statements, each person was asked to choose the statement that was most consistent with his or her opinion. The results are shown in the table.

	Environment Statement	Economy Statement	No Preference
Percent of sample	58%	37%	5%

(a) Assume the conditions for inference have been met. Construct and interpret a 95 percent confidence interval for the proportion of all adults in the United States who would have chosen the economy statement.
(b) One of the conditions for inference that was met is that the number who chose the economy statement and the number who did not choose the economy statement are both greater than 10 . Explain why it is necessary to satisfy that condition.
(c) A suggestion was made to use a two-sample z-interval for a difference between proportions to investigate whether the difference in proportions between adults in the United States who would have chosen the environment statement and adults in the United States who would have chosen the economy statement is statistically significant. Is the two-sample z-interval for a difference between proportions an appropriate procedure to investigate the difference? Justify your answer.
2. To increase business, the owner of a restaurant is running a promotion in which a customer's bill can be randomly selected to receive a discount. When a customer's bill is printed, a program in the cash register randomly determines whether the customer will receive a discount on the bill. The program was written to generate a discount with a probability of 0.2 , that is, giving 20 percent of the bills a discount in the long run. However, the owner is concerned that the program has a mistake that results in the program not generating the intended long-run proportion of 0.2 .

The owner selected a random sample of bills and found that only 15 percent of them received discounts. A confidence interval for p, the proportion of bills that will receive a discount in the long run, is 0.15 ± 0.06. All conditions for inference were met.
(a) Consider the confidence interval 0.15 ± 0.06.
(i) Does the confidence interval provide convincing statistical evidence that the program is not working as intended? Justify your answer.
(ii) Does the confidence interval provide convincing statistical evidence that the program generates the discount with a probability of 0.2 ? Justify your answer.

A second random sample of bills was taken that was four times the size of the original sample. In the second sample 15 percent of the bills received the discount.
(b) Determine the value of the margin of error based on the second sample of bills that would be used to compute an interval for p with the same confidence level as that of the original interval.
(c) Based on the margin of error in part (b) that was obtained from the second sample, what do you conclude about whether the program is working as intended? Justify your answer.
3. Schools in a certain state receive funding based on the number of students who attend the school. To determine the number of students who attend a school, one school day is selected at random and the number of students in attendance that day is counted and used for funding purposes. The daily number of absences at High School A in the state is approximately normally distributed with mean of 120 students and standard deviation of 10.5 students.
(a) If more than 140 students are absent on the day the attendance count is taken for funding purposes, the school will lose some of its state funding in the subsequent year. Approximately what is the probability that High School A will lose some state funding?
(b) The principals' association in the state suggests that instead of choosing one day at random, the state should choose 3 days at random. With the suggested plan, High School A would lose some of its state funding in the subsequent year if the mean number of students absent for the 3 days is greater than 140 . Would High School A be more likely, less likely, or equally likely to lose funding using the suggested plan compared to the plan described in part (a)? Justify your choice.
(c) A typical school week consists of the days Monday, Tuesday, Wednesday, Thursday, and Friday. The principal at High School A believes that the number of absences tends to be greater on Mondays and Fridays, and there is concern that the school will lose state funding if the attendance count occurs on a Monday or Friday. If one school day is chosen at random from each of 3 typical school weeks, what is the probability that none of the 3 days chosen is a Tuesday, Wednesday, or Thursday?

Questions 1-5

Spend about 65 minutes on this part of the exam.

Percent of Section II score- 75

Directions: Show all your work. Indicate clearly the methods you use, because you will be scored on the correctness of your methods as well as on the accuracy and completeness of your results and explanations.

1. An environmental group conducted a study to determine whether crows in a certain region were ingesting food containing unhealthy levels of lead. A biologist classified lead levels greater than 6.0 parts per million (ppm) as unhealthy. The lead levels of a random sample of 23 crows in the region were measured and recorded. The data are shown in the stemplot below.

Lead Levels

2	8				
3	0				
3	5	8	8		
4	1	1	2		
4	6	8	8		
5	0	1	2	2	3

Key: $2 \mid 8=2.8 \mathrm{ppm}$
(a) What proportion of crows in the sample had lead levels that are classified by the biologist as unhealthy?
(b) The mean lead level of the 23 crows in the sample was 4.90 ppm and the standard deviation was 1.12 ppm . Construct and interpret a 95 percent confidence interval for the mean lead level of crows in the region.
2. A local radio station plays 40 rock-and-roll songs during each 4-hour show. The program director at the station needs to know the total amount of airtime for the 40 songs so that time can also be programmed during the show for news and advertisements. The distribution of the lengths of rock-and-roll songs, in minutes, is roughly symmetric with a mean length of 3.9 minutes and a standard deviation of 1.1 minutes.
(a) Describe the sampling distribution of the sample mean song lengths for random samples of 40 rock-and-roll songs.
(b) If the program manager schedules 80 minutes of news and advertisements for the 4-hour (240-minute) show, only 160 minutes are available for music. Approximately what is the probability that the total amount of time needed to play 40 randomly selected rock-and-roll songs exceeds the available airtime?
3. A humane society wanted to estimate with 95 percent confidence the proportion of households in its county that own at least one dog.
(a) Interpret the 95 percent confidence level in this context.

The humane society selected a random sample of households in its county and used the sample to estimate the proportion of all households that own at least one dog. The conditions for calculating a 95 percent confidence interval for the proportion of households in this county that own at least one dog were checked and verified, and the resulting confidence interval was 0.417 ± 0.119.
(b) A national pet products association claimed that 39 percent of all American households owned at least one dog. Does the humane society's interval estimate provide evidence that the proportion of dog owners in its county is different from the claimed national proportion? Explain.
(c) How many households were selected in the humane society's sample? Show how you obtained your answer.

Directions: Show all your work. Indicate clearly the methods you use, because you will be scored on the correctness of your methods as well as on the accuracy and completeness of your results and explanations.

1. The manager of a grocery store selected a random sample of 11 customers to investigate the relationship between the number of customers in a checkout line and the time to finish checkout. As soon as the selected customer entered the end of a checkout line, data were collected on the number of customers in line who were in front of the selected customer and the time, in seconds, until the selected customer was finished with the checkout. The data are shown in the following scatterplot along with the corresponding least-squares regression line and computer output.

Predictor	Coef	SE Coef	T	P
Constant	72.95	110.36	0.66	0.525
Customers in line	174.40	35.06	4.97	0.001
$\mathrm{~S}=200.01$		$\mathrm{R}-\mathrm{Sq}=73.33 \%$	$\mathrm{R}-\mathrm{Sq}(\mathrm{adj})=70.37 \%$	

(a) Identify and interpret in context the estimate of the intercept for the least-squares regression line.
(b) Identify and interpret in context the coefficient of determination, r^{2}.
(c) One of the data points was determined to be an outlier. Circle the point on the scatterplot and explain why the point is considered an outlier.

1. Researchers studying a pack of gray wolves in North America collected data on the length x, in meters, from nose to tip of tail, and the weight y, in kilograms, of the wolves. A scatterplot of weight versus length revealed a relationship between the two variables described as positive, linear, and strong.
(a) For the situation described above, explain what is meant by each of the following words.
(i) Positive:
(ii) Linear:
(iii) Strong:

The data collected from the wolves were used to create the least-squares equation $\hat{y}=-16.46+35.02 x$.
(b) Interpret the meaning of the slope of the least-squares regression line in context.
(c) One wolf in the pack with a length of 1.4 meters had a residual of -9.67 kilograms. What was the weight of the wolf?
5. A student measured the heights and the arm spans, rounded to the nearest inch, of each person in a random sample of 12 seniors at a high school. A scatterplot of arm span versus height for the 12 seniors is shown.

(a) Based on the scatterplot, describe the relationship between arm span and height for the sample of 12 seniors.

Let x represent height, in inches, and let y represent arm span, in inches. Two scatterplots of the same data are shown below. Graph 1 shows the data with the least squares regression line $\hat{y}=11.74+0.8247 x$, and graph 2 shows the data with the line $y=x$.

GRAPH 1

GRAPH 2

(b) The criteria described in the table below can be used to classify people into one of three body shape categories: square, tall rectangle, or short rectangle.

Square	Tall Rectangle	Short Rectangle
Arm span is equal to height.	Arm span is less than height.	Arm span is greater than height.

(i) For which graph, 1 or 2, is the line helpful in classifying a student's body shape as square, tall rectangle, or short rectangle? Explain.
(ii) Complete the table of classifications for the 12 seniors.

Classification	Square	Tall Rectangle	Short Rectangle
Frequency			

(c) Using the best model for prediction, calculate the predicted arm span for a senior with height 61 inches.
5. Windmills generate electricity by transferring energy from wind to a turbine. A study was conducted to examine the relationship between wind velocity in miles per hour (mph) and electricity production in amperes for one particular windmill. For the windmill, measurements were taken on twenty-five randomly selected days, and the computer output for the regression analysis for predicting electricity production based on wind velocity is given below. The regression model assumptions were checked and determined to be reasonable over the interval of wind speeds represented in the data, which were from 10 miles per hour to 40 miles per hour.

Predictor	Coef	SE Coef	T	P
Constant	0.137	0.126	1.09	0.289
Wind velocity	0.240	0.019	12.63	0.000
$\mathrm{~S}=0.237$	$\mathrm{R}-\mathrm{Sq}=0.873$	$\mathrm{R}-\mathrm{Sq}(\mathrm{adj})=0.868$		

(a) Use the computer output above to determine the equation of the least squares regression line. Identify all variables used in the equation.
(b) How much more electricity would the windmill be expected to produce on a day when the wind velocity is 25 mph than on a day when the wind velocity is 15 mph ? Show how you arrived at your answer.
(c) What proportion of the variation in electricity production is explained by its linear relationship with wind velocity?
(d) Is there statistically convincing evidence that electricity production by the windmill is related to wind velocity? Explain.

1. Agricultural experts are trying to develop a bird deterrent to reduce costly damage to crops in the United States. An experiment is to be conducted using garlic oil to study its effectiveness as a nontoxic, environmentally safe bird repellant. The experiment will use European starlings, a bird species that causes considerable damage annually to the corn crop in the United States. Food granules made from corn are to be infused with garlic oil in each of five concentrations of garlic - 0 percent, 2 percent, 10 percent, 25 percent, and 50 percent. The researchers will determine the adverse reaction of the birds to the repellant by measuring the number of food granules consumed during a two-hour period following overnight food deprivation. There are forty birds available for the experiment, and the researchers will use eight birds for each concentration of garlic. Each bird will be kept in a separate cage and provided with the same number of food granules.
(a) For the experiment, identify
i. the treatments
ii. the experimental units
iii. the response that will be measured
(b) After performing the experiment, the researchers recorded the data shown in the table below.

Garlic oil concentration	0%	2%	10%	25%	50%
Mean number of food granules consumed	58	48	29	24	20
Number of birds	8	8	8	8	8

i. Construct a graph of the data that could be used to investigate the appropriateness of a linear regression model for analyzing the results of the experiment.

ii. Based on your graph, do you think a linear regression model is appropriate? Explain.
3. A medical researcher surveyed a large group of men and women about whether they take medicine as prescribed. The responses were categorized as never, sometimes, or always. The relative frequency of each category is shown in the table.

	Never	Sometimes	Always	Total
Men	0.0564	0.2016	0.2120	0.4700
Women	0.0636	0.1384	0.3280	0.5300
Total	0.1200	0.3400	0.5400	1.0000

(a) One person from those surveyed will be selected at random.
(i) What is the probability that the person selected will be someone whose response is never and who is a woman?
(ii) What is the probability that the person selected will be someone whose response is never or who is a woman?
(iii) What is the probability that the person selected will be someone whose response is never given that the person is a woman?
(b) For the people surveyed, are the events of being a person whose response is never and being a woman independent? Justify your answer.
(c) Assume that, in a large population, the probability that a person will always take medicine as prescribed is 0.54 . If 5 people are selected at random from the population, what is the probability that at least 4 of the people selected will always take medicine as prescribed? Support your answer.
5. A company that manufactures smartphones developed a new battery that has a longer life span than that of a traditional battery. From the date of purchase of a smartphone, the distribution of the life span of the new battery is approximately normal with mean 30 months and standard deviation 8 months. For the price of $\$ 50$, the company offers a two-year warranty on the new battery for customers who purchase a smartphone. The warranty guarantees that the smartphone will be replaced at no cost to the customer if the battery no longer works within 24 months from the date of purchase.
(a) In how many months from the date of purchase is it expected that 25 percent of the batteries will no longer work? Justify your answer.
(b) Suppose one customer who purchases the warranty is selected at random. What is the probability that the customer selected will require a replacement within 24 months from the date of purchase because the battery no longer works?
(c) The company has a gain of $\$ 50$ for each customer who purchases a warranty but does not require a replacement. The company has a loss (negative gain) of $\$ 150$ for each customer who purchases a warranty and does require a replacement. What is the expected value of the gain for the company for each warranty purchased?
3. Approximately 3.5 percent of all children born in a certain region are from multiple births (that is, twins, triplets, etc.). Of the children born in the region who are from multiple births, 22 percent are left-handed. Of the children born in the region who are from single births, 11 percent are left-handed.
(a) What is the probability that a randomly selected child born in the region is left-handed?
(b) What is the probability that a randomly selected child born in the region is a child from a multiple birth, given that the child selected is left-handed?
(c) A random sample of 20 children born in the region will be selected. What is the probability that the sample will have at least 3 children who are left-handed?
3. A grocery store purchases melons from two distributors, J and K. Distributor J provides melons from organic farms. The distribution of the diameters of the melons from Distributor J is approximately normal with mean 133 millimeters (mm) and standard deviation 5 mm .
(a) For a melon selected at random from Distributor J, what is the probability that the melon will have a diameter greater than 137 mm ?

Distributor K provides melons from nonorganic farms. The probability is 0.8413 that a melon selected at random from Distributor K will have a diameter greater than 137 mm . For all the melons at the grocery store, 70 percent of the melons are provided by Distributor J and 30 percent are provided by Distributor K.
(b) For a melon selected at random from the grocery store, what is the probability that the melon will have a diameter greater than 137 mm ?
(c) Given that a melon selected at random from the grocery store has a diameter greater than 137 mm , what is the probability that the melon will be from Distributor J?
4. A company manufactures model rockets that require igniters to launch. Once an igniter is used to launch a rocket, the igniter cannot be reused. Sometimes an igniter fails to operate correctly, and the rocket does not launch. The company estimates that the overall failure rate, defined as the percent of all igniters that fail to operate correctly, is 15 percent.
A company engineer develops a new igniter, called the super igniter, with the intent of lowering the failure rate. To test the performance of the super igniters, the engineer uses the following process.

Step 1: One super igniter is selected at random and used in a rocket.
Step 2: If the rocket launches, another super igniter is selected at random and used in a rocket.
Step 2 is repeated until the process stops. The process stops when a super igniter fails to operate correctly or 32 super igniters have successfully launched rockets, whichever comes first. Assume that super igniter failures are independent.
(a) If the failure rate of the super igniters is 15 percent, what is the probability that the first 30 super igniters selected using the testing process successfully launch rockets?
(b) Given that the first 30 super igniters successfully launch rockets, what is the probability that the first failure occurs on the thirty-first or the thirty-second super igniter tested if the failure rate of the super igniters is 15 percent?
(c) Given that the first 30 super igniters successfully launch rockets, is it reasonable to believe that the failure rate of the super igniters is less than 15 percent? Explain.
3. A shopping mall has three automated teller machines (ATMs). Because the machines receive heavy use, they sometimes stop working and need to be repaired. Let the random variable X represent the number of ATMs that are working when the mall opens on a randomly selected day. The table shows the probability distribution of X.

Number of ATMs working when the mall opens	0	1	2	3
Probability	0.15	0.21	0.40	0.24

(a) What is the probability that at least one ATM is working when the mall opens?
(b) What is the expected value of the number of ATMs that are working when the mall opens?
(c) What is the probability that all three ATMs are working when the mall opens, given that at least one ATM is working?
(d) Given that at least one ATM is working when the mall opens, would the expected value of the number of ATMs that are working be less than, equal to, or greater than the expected value from part (b) ? Explain.
2. Nine sales representatives, 6 men and 3 women, at a small company wanted to attend a national convention. There were only enough travel funds to send 3 people. The manager selected 3 people to attend and stated that the people were selected at random. The 3 people selected were women. There were concerns that no men were selected to attend the convention.
(a) Calculate the probability that randomly selecting 3 people from a group of 6 men and 3 women will result in selecting 3 women.
(b) Based on your answer to part (a), is there reason to doubt the manager's claim that the 3 people were selected at random? Explain.
(c) An alternative to calculating the exact probability is to conduct a simulation to estimate the probability. A proposed simulation process is described below.

Each trial in the simulation consists of rolling three fair, six-sided dice, one die for each of the convention attendees. For each die, rolling a $1,2,3$, or 4 represents selecting a man; rolling a 5 or 6 represents selecting a woman. After 1,000 trials, the number of times the dice indicate selecting 3 women is recorded.

Does the proposed process correctly simulate the random selection of 3 women from a group of 9 people consisting of 6 men and 3 women? Explain why or why not.
3. Each full carton of Grade A eggs consists of 1 randomly selected empty cardboard container and 12 randomly selected eggs. The weights of such full cartons are approximately normally distributed with a mean of 840 grams and a standard deviation of 7.9 grams.
(a) What is the probability that a randomly selected full carton of Grade A eggs will weigh more than 850 grams?
(b) The weights of the empty cardboard containers have a mean of 20 grams and a standard deviation of 1.7 grams. It is reasonable to assume independence between the weights of the empty cardboard containers and the weights of the eggs. It is also reasonable to assume independence among the weights of the 12 eggs that are randomly selected for a full carton.
Let the random variable X be the weight of a single randomly selected Grade A egg.
i) What is the mean of X ?
ii) What is the standard deviation of X ?
2. A charity fundraiser has a Spin the Pointer game that uses a spinner like the one illustrated in the figure below.

A donation of $\$ 2$ is required to play the game. For each $\$ 2$ donation, a player spins the pointer once and receives the amount of money indicated in the sector where the pointer lands on the wheel. The spinner has an equal probability of landing in each of the 10 sectors.
(a) Let X represent the net contribution to the charity when one person plays the game once. Complete the table for the probability distribution of X.

x	$\$ 2$	$\$ 1$	$-\$ 8$
$P(x)$			

(b) What is the expected value of the net contribution to the charity for one play of the game?
(c) The charity would like to receive a net contribution of $\$ 500$ from this game. What is the fewest number of times the game must be played for the expected value of the net contribution to be at least $\$ 500$?
(d) Based on last year's event, the charity anticipates that the Spin the Pointer game will be played 1,000 times. The charity would like to know the probability of obtaining a net contribution of at least $\$ 500$ in 1,000 plays of the game. The mean and standard deviation of the net contribution to the charity in 1,000 plays of the game are $\$ 700$ and $\$ 92.79$, respectively. Use the normal distribution to approximate the probability that the charity would obtain a net contribution of at least $\$ 500$ in 1,000 plays of the game.
2. The table below shows the political party registration by gender of all 500 registered voters in Franklin Township.

PARTY REGISTRATION-FRANKLIN TOWNSHIP

	Party W	Party X	Party Y	Total
Female	60	120	120	300
Male	28	124	48	200
Total	88	244	168	500

(a) Given that a randomly selected registered voter is a male, what is the probability that he is registered for Party Y?
(b) Among the registered voters of Franklin Township, are the events "is a male" and "is registered for Party Y" independent? Justify your answer based on probabilities calculated from the table above.
(c) One way to display the data in the table is to use a segmented bar graph. The following segmented bar graph, constructed from the data in the party registration-Franklin Township table, shows party-registration distributions for males and females in Franklin Township.

FRANKLIN TOWNSHIP

In Lawrence Township, the proportions of all registered voters for Parties W, X, and Y are the same as for Franklin Township, and party registration is independent of gender. Complete the graph below to show the distributions of party registration by gender in Lawrence Township.

LAWRENCE TOWNSHIP

4. An automobile company wants to learn about customer satisfaction among the owners of five specific car models. Large sales volumes have been recorded for three of the models, but the other two models were recently introduced so their sales volumes are smaller. The number of new cars sold in the last six months for each of the models is shown in the table below.

Car Model	A	B	C	D	E	Total
Number of new cars sold in the last six months	112,338	96,174	83,241	3,278	2,323	297,354

The company can obtain a list of all individuals who purchased new cars in the last six months for each of the five models shown in the table. The company wants to sample 2,000 of these owners.
(a) For simple random samples of 2,000 new car owners, what is the expected number of owners of model E and the standard deviation of the number of owners of model E ?
(b) When selecting a simple random sample of 2,000 new car owners, how likely is it that fewer than 12 owners of model E would be included in the sample? Justify your answer.
(c) The company is concerned that a simple random sample of 2,000 owners would include fewer than 12 owners of model D or fewer than 12 owners of model E. Briefly describe a sampling method for randomly selecting 2,000 owners that will ensure at least 12 owners will be selected for each of the 5 car models.
4. Tumbleweed, commonly found in the western United States, is the dried structure of certain plants that are blown by the wind. Kochia, a type of plant that turns into tumbleweed at the end of the summer, is a problem for farmers because it takes nutrients away from soil that would otherwise go to more beneficial plants. Scientists are concerned that kochia plants are becoming resistant to the most commonly used herbicide, glyphosate. In $2014,19.7$ percent of 61 randomly selected kochia plants were resistant to glyphosate. In $2017,38.5$ percent of 52 randomly selected kochia plants were resistant to glyphosate. Do the data provide convincing statistical evidence, at the level of $\alpha=0.05$, that there has been an increase in the proportion of all kochia plants that are resistant to glyphosate?
4. The anterior cruciate ligament (ACL) is one of the ligaments that help stabilize the knee. Surgery is often recommended if the ACL is completely torn, and recovery time from the surgery can be lengthy. A medical center developed a new surgical procedure designed to reduce the average recovery time from the surgery. To test the effectiveness of the new procedure, a study was conducted in which 210 patients needing surgery to repair a torn ACL were randomly assigned to receive either the standard procedure or the new procedure.
(a) Based on the design of the study, would a statistically significant result allow the medical center to conclude that the new procedure causes a reduction in recovery time compared to the standard procedure, for patients similar to those in the study? Explain your answer.
(b) Summary statistics on the recovery times from the surgery are shown in the table.

Type of Procedure	Sample Size	Mean Recovery Time (days)	Standard Deviation Recovery Time (days)
Standard	110	217	34
New	100	186	29

Do the data provide convincing statistical evidence that those who receive the new procedure will have less recovery time from the surgery, on average, than those who receive the standard procedure, for patients similar to those in the study?
5. The table and the bar chart below summarize the age at diagnosis, in years, for a random sample of 207 men and women currently being treated for schizophrenia.

Age-Group (years)						
	20 to 29	30 to 39	40 to 49	50 to 59	Total	
Women	46	40	21	12	119	
Men	53	23	9	3	88	
Total	99	63	30	15	207	

Do the data provide convincing statistical evidence of an association between age-group and gender in the diagnosis of schizophrenia?
Additionally, Do 2016 Question 5 part c (unit 3 - Sampling distributions)

2016 Question \#2

2. Product advertisers studied the effects of television ads on children's choices for two new snacks. The advertisers used two 30 -second television ads in an experiment. One ad was for a new sugary snack called Choco-Zuties, and the other ad was for a new healthy snack called Apple-Zuties.
For the experiment, 75 children were randomly assigned to one of three groups, A, B, or C. Each child individually watched a 30 -minute television program that was interrupted for 5 minutes of advertising. The advertising was the same for each group with the following exceptions.

- The advertising for group A included the Choco-Zuties ad but not the Apple-Zuties ad.
- The advertising for group B included the Apple-Zuties ad but not the Choco-Zuties ad.
- The advertising for group C included neither the Choco-Zuties ad nor the Apple-Zuties ad.

After the program, the children were offered a choice between the two snacks. The table below summarizes their choices.

Group	Type of Ad	Number Who Chose Choco-Zuties	Number Who Chose Apple-Zuties
A	Choco-Zuties only	21	4
B	Apple-Zuties only	13	12
C	Neither	22	3

(a) Do the data provide convincing statistical evidence that there is an association between type of ad and children's choice of snack among all children similar to those who participated in the experiment?
(b) Write a few sentences describing the effect of each ad on children's choice of snack.
4. A researcher conducted a medical study to investigate whether taking a low-dose aspirin reduces the chance of developing colon cancer. As part of the study, 1,000 adult volunteers were randomly assigned to one of two groups. Half of the volunteers were assigned to the experimental group that took a low-dose aspirin each day, and the other half were assigned to the control group that took a placebo each day. At the end of six years, 15 of the people who took the low-dose aspirin had developed colon cancer and 26 of the people who took the placebo had developed colon cancer. At the significance level $\alpha=0.05$, do the data provide convincing statistical evidence that taking a low-dose aspirin each day would reduce the chance of developing colon cancer among all people similar to the volunteers?

2014 Question \#5

5. A researcher conducted a study to investigate whether local car dealers tend to charge women more than men for the same car model. Using information from the county tax collector's records, the researcher randomly selected one man and one woman from among everyone who had purchased the same model of an identically equipped car from the same dealer. The process was repeated for a total of 8 randomly selected car models.

The purchase prices and the differences (woman - man) are shown in the table below. Summary statistics are also shown.

Car model	1	2	3	4	5	6	7	8
Women	$\$ 20,100$	$\$ 17,400$	$\$ 22,300$	$\$ 32,500$	$\$ 17,710$	$\$ 21,500$	$\$ 29,600$	$\$ 46,300$
Men	$\$ 19,580$	$\$ 17,500$	$\$ 21,400$	$\$ 32,300$	$\$ 17,720$	$\$ 20,300$	$\$ 28,300$	$\$ 45,630$
Difference	$\$ 520$	$-\$ 100$	$\$ 900$	$\$ 200$	$-\$ 10$	$\$ 1,200$	$\$ 1,300$	$\$ 670$

	Mean	Standard Deviation
Women	$\$ 25,926.25$	$\$ 9,846.61$
Men	$\$ 25,341.25$	$\$ 9,728.60$
Difference	$\$ 585.00$	$\$ 530.71$

Dotplots of the data and the differences are shown below.

Purchase Price (in thousands of dollars)

Do the data provide convincing evidence that, on average, women pay more than men in the county for the same car model?
4. The Behavioral Risk Factor Surveillance System is an ongoing health survey system that tracks health conditions and risk behaviors in the United States. In one of their studies, a random sample of 8,866 adults answered the question "Do you consume five or more servings of fruits and vegetables per day?" The data are summarized by response and by age-group in the frequency table below.

Age-Group (years)	Yes	No	Total
$18-34$	231	741	972
$35-54$	669	2,242	2,911
55 or older	1,291	3,692	4,983
Total	2,191	6,675	8,866

Do the data provide convincing statistical evidence that there is an association between age-group and whether or not a person consumes five or more servings of fruits and vegetables per day for adults in the United States?
5. Psychologists interested in the relationship between meditation and health conducted a study with a random sample of 28 men who live in a large retirement community. Of the men in the sample, 11 reported that they participate in daily meditation and 17 reported that they do not participate in daily meditation.
The researchers wanted to perform a hypothesis test of

$$
\begin{aligned}
& \mathrm{H}_{0}: p_{m}-p_{c}=0 \\
& \mathrm{H}_{a}: p_{m}-p_{c}<0,
\end{aligned}
$$

where p_{m} is the proportion of men with high blood pressure among all the men in the retirement community who participate in daily meditation and p_{c} is the proportion of men with high blood pressure among all the men in the retirement community who do not participate in daily meditation.
(a) If the study were to provide significant evidence against H_{0} in favor of H_{a}, would it be reasonable for the psychologists to conclude that daily meditation causes a reduction in blood pressure for men in the retirement community? Explain why or why not.

The psychologists found that of the 11 men in the study who participate in daily meditation, 0 had high blood pressure. Of the 17 men who do not participate in daily meditation, 8 had high blood pressure.
(b) Let \hat{p}_{m} represent the proportion of men with high blood pressure among those in a random sample of 11 who meditate daily, and let \hat{p}_{c} represent the proportion of men with high blood pressure among those in a random sample of 17 who do not meditate daily. Why is it not reasonable to use a normal approximation for the sampling distribution of $\hat{p}_{m}-\hat{p}_{c}$?

Although a normal approximation cannot be used, it is possible to simulate the distribution of $\hat{p}_{m}-\hat{p}_{c}$. Under the assumption that the null hypothesis is true, 10,000 values of $\hat{p}_{m}-\hat{p}_{c}$ were simulated. The histogram below shows the results of the simulation.

(c) Based on the results of the simulation, what can be concluded about the relationship between blood pressure and meditation among men in the retirement community?
3. Independent random samples of 500 households were taken from a large metropolitan area in the United States for the years 1950 and 2000. Histograms of household size (number of people in a household) for the years are shown below.

(a) Compare the distributions of household size in the metropolitan area for the years 1950 and 2000.
(b) A researcher wants to use these data to construct a confidence interval to estimate the change in mean household size in the metropolitan area from the year 1950 to the year 2000. State the conditions for using a two-sample t-procedure, and explain whether the conditions for inference are met.
4. A survey organization conducted telephone interviews in December 2008 in which 1,009 randomly selected adults in the United States responded to the following question.

At the present time, do you think television commercials are an effective way to promote a new product?

Of the 1,009 adults surveyed, 676 responded "yes." In December 2007, 622 of 1,020 randomly selected adults in the United States had responded "yes" to the same question. Do the data provide convincing evidence that the proportion of adults in the United States who would respond "yes" to the question changed from December 2007 to December 2008 ?
5. A recent report stated that less than 35 percent of the adult residents in a certain city will be able to pass a physical fitness test. Consequently, the city's Recreation Department is trying to convince the City Council to fund more physical fitness programs. The council is facing budget constraints and is skeptical of the report. The council will fund more physical fitness programs only if the Recreation Department can provide convincing evidence that the report is true.

The Recreation Department plans to collect data from a sample of 185 adult residents in the city. A test of significance will be conducted at a significance level of $\alpha=0.05$ for the following hypotheses.

$$
\begin{aligned}
& \mathrm{H}_{0}: p=0.35 \\
& \mathrm{H}_{\mathrm{a}}: p<0.35
\end{aligned}
$$

where p is the proportion of adult residents in the city who are able to pass the physical fitness test.
(a) Describe what a Type II error would be in the context of the study, and also describe a consequence of making this type of error.
(b) The Recreation Department recruits 185 adult residents who volunteer to take the physical fitness test. The test is passed by 77 of the 185 volunteers, resulting in a p-value of 0.97 for the hypotheses stated above. If it was reasonable to conduct a test of significance for the hypotheses stated above using the data collected from the 185 volunteers, what would the p-value of 0.97 lead you to conclude?
(c) Describe the primary flaw in the study described in part (b), and explain why it is a concern.
**Additionally, complete 2011 \#5 part D...in unit 4 (regression lines)

2011 Question \#4

4. High cholesterol levels in people can be reduced by exercise, diet, and medication. Twenty middle-aged males with cholesterol readings between 220 and 240 milligrams per deciliter ($\mathrm{mg} / \mathrm{dL}$) of blood were randomly selected from the population of such male patients at a large local hospital. Ten of the 20 males were randomly assigned to group A , advised on appropriate exercise and diet, and also received a placebo. The other 10 males were assigned to group B, received the same advice on appropriate exercise and diet, but received a drug intended to reduce cholesterol instead of a placebo. After three months, posttreatment cholesterol readings were taken for all 20 males and compared to pretreatment cholesterol readings. The tables below give the reduction in cholesterol level (pretreatment reading minus posttreatment reading) for each male in the study.
Group A (placebo)

Reduction (in mg/dL)	2	19	8	4	12	8	17	7	24	1

Mean Reduction: 10.20 Standard Deviation of Reductions: 7.66

Group B (cholesterol drug)

Reduction (in mg/dL)	30	19	18	17	20	-4	23	10	9	22

Mean Reduction: 16.40 Standard Deviation of Reductions: 9.40
Do the data provide convincing evidence, at the $\alpha=0.01$ level, that the cholesterol drug is effective in producing a reduction in mean cholesterol level beyond that produced by exercise and diet?
5. A large pet store buys the identical species of adult tropical fish from two different suppliers-Buy-Rite Pets and Fish Friends. Several of the managers at the pet store suspect that the lengths of the fish from Fish Friends are consistently greater than the lengths of the fish from Buy-Rite Pets. Random samples of 8 adult fish of the species from Buy-Rite Pets and 10 adult fish of the same species from Fish Friends were selected and the lengths of the fish, in inches, were recorded, as shown in the table below.

| | Length of Fish | | | | | | Mean | Standard
 Deviation | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Buy-Rite Pets
 $\left(n_{B}=8\right)$ | 3.4 | 2.7 | 3.3 | 4.1 | 3.5 | 3.4 | 3.0 | 3.8 | | 3.40 | 0.434 | |
| Fish Friends
 $\left(n_{F}=10\right)$ | 3.3 | 2.9 | 4.2 | 3.1 | 4.2 | 4.0 | 3.4 | 3.2 | 3.7 | 2.6 | 3.46 | 0.550 |

Do the data provide convincing evidence that the mean length of the adult fish of the species from Fish Friends is greater than the mean length of the adult fish of the same species from Buy-Rite Pets?

2019 Question \#6 (likely was 3 or 4 pages on the AP exam)

Question 6

Spend about 25 minutes on this part of the exam.

Percent of Section II score- $\mathbf{2 5}$

Directions: Show all your work. Indicate clearly the methods you use, because you will be scored on the correctness of your methods as well as on the accuracy and completeness of your results and explanations.
6. Emma is moving to a large city and is investigating typical monthly rental prices of available one-bedroom apartments. She obtained a random sample of rental prices for 50 one-bedroom apartments taken from a Web site where people voluntarily list available apartments.
(a) Describe the population for which it is appropriate for Emma to generalize the results from her sample.

The distribution of the 50 rental prices of the available apartments is shown in the following histogram.

(b) Emma wants to estimate the typical rental price of a one-bedroom apartment in the city. Based on the distribution shown, what is a disadvantage of using the mean rather than the median as an estimate of the typical rental price?
(c) Instead of using the sample median as the point estimate for the population median, Emma wants to use an interval estimate. However, computing an interval estimate requires knowing the sampling distribution of the sample median for samples of size 50 . Emma has one point, her sample median, in that sampling distribution. Using information about rental prices that are available on the Web site, describe how someone could develop a theoretical sampling distribution of the sample median for samples of size 50 .

Because Emma does not have the resources to develop the theoretical sampling distribution, she estimates the sampling distribution of the sample median using a process called bootstrapping. In the bootstrapping process, a computer program performs the following steps.

- Take a random sample, with replacement, of size 50 from the original sample.
- Calculate and record the median of the sample.
- Repeat the process to obtain a total of 15,000 medians.

Emma ran the bootstrap process, and the following frequency table is the bootstrap distribution showing her results of generating 15,000 medians.

Bootstrap Distribution of Medians					
Median	Frequency	Median	Frequency	Median	Frequency
2,345	1	2,585	1	2,825	247
2,390	13	$2,587.5$	171	$2,837.5$	7
2,395	18	2,600	22	$2,847.5$	1
2,400	56	$2,612.5$	1,190	$2,872.5$	317
2,445	4	2,625	174	2,885	10
$2,447.5$	56	$2,672.5$	5	2,950	700
2,450	55	2,675	1,924	$2,962.5$	93
2,475	3	$2,687.5$	1,341	$2,972.5$	6
2,495	66	2,700	2,825	2,975	65
$2,497.5$	136	2,735	35	2,985	12
2,500	1,899	$2,747.5$	619	$2,987.5$	1
$2,522.5$	2	2,750	2	2,995	6
2,525	945	2,795	278	3,000	2
2,550	1,673	$2,812.5$	16	$3,062.5$	3

The bootstrap distribution provides an approximation of the sampling distribution of the sample median. A confidence interval for the median can be constructed using a percentage of the values in the middle of the bootstrap distribution.
(d) Use the frequency table to find the following.
(i) Value of the 5th percentile:
(ii) Value of the 95th percentile:
(e) Find the percentage of bootstrap medians in the table that are equal to or between the values found in part (d).
(f) Use your values from parts (d) and (e) to construct and interpret a confidence interval for the median rental price.

Question 6

Spend about 25 minutes on this part of the exam.
 Percent of Section II score- 25

Directions: Show all your work. Indicate clearly the methods you use, because you will be scored on the correctness of your methods as well as on the accuracy and completeness of your results and explanations.
6. Systolic blood pressure is the amount of pressure that blood exerts on blood vessels while the heart is beating. The mean systolic blood pressure for people in the United States is reported to be 122 millimeters of mercury (mmHg) with a standard deviation of 15 mmHg .

The wellness department of a large corporation is investigating whether the mean systolic blood pressure of its employees is greater than the reported national mean. A random sample of 100 employees will be selected, the systolic blood pressure of each employee in the sample will be measured, and the sample mean will be calculated.

Let μ represent the mean systolic blood pressure of all employees at the corporation. Consider the following hypotheses.

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu=122 \\
& \mathrm{H}_{\mathrm{a}}: \mu>122
\end{aligned}
$$

(a) Describe a Type II error in the context of the hypothesis test.
(b) Assume that σ, the standard deviation of the systolic blood pressure of all employees at the corporation, is 15 mmHg . If $\mu=122$, the sampling distribution of \bar{x} for samples of size 100 is approximately normal with a mean of 122 mmHg and a standard deviation of 1.5 mmHg . What values of the sample mean \bar{x} would represent sufficient evidence to reject the null hypothesis at the significance level of $\alpha=0.05$?

The actual mean systolic blood pressure of all employees at the corporation is 125 mmHg , not the hypothesized value of 122 mmHg , and the standard deviation is 15 mmHg .
(c) Using the actual mean of 125 mmHg and the results from part (b), determine the probability that the null hypothesis will be rejected.
(d) What statistical term is used for the probability found in part (c)?
(e) Suppose the size of the sample of employees to be selected is greater than 100 . Would the probability of rejecting the null hypothesis be greater than, less than, or equal to the probability calculated in part (c) ? Explain your reasoning.

Question 6

Spend about 25 minutes on this part of the exam.
 Percent of Section II score- 25

Directions: Show all your work. Indicate clearly the methods you use, because you will be scored on the correctness of your methods as well as on the accuracy and completeness of your results and explanations.
6. Consider an experiment in which two men and two women will be randomly assigned to either a treatment group or a control group in such a way that each group has two people. The people are identified as Man 1, Man 2, Woman 1, and Woman 2. The six possible arrangements are shown below.

Arrangement A	
Treatment	Control
Man 1	Woman 1
Man 2	Woman 2

Arrangement B	
Treatment	Control
Man 1	Man 2
Woman 1	Woman 2

Arrangement C	
Treatment	Control
Man 1 Woman 2	Man 2 Woman 1

Arrangement D	
Treatment	Control
Woman 1	Man 1
Woman 2	Man 2

Arrangement E	
Treatment	Control
Man 2	Man 1
Woman 2	Woman 1

Arrangement F	
Treatment	Control
Man 2	Man 1
Woman 1	Woman 2

Two possible methods of assignment are being considered: the sequential coin flip method, as described in part (a), and the chip method, as described in part (b). For each method, the order of the assignment will be Man 1, Man 2, Woman 1, Woman 2.
(a) For the sequential coin flip method, a fair coin is flipped until one group has two people. An outcome of tails assigns the person to the treatment group, and an outcome of heads assigns the person to the control group. As soon as one group has two people, the remaining people are automatically assigned to the other group.
(i) Complete the table below by calculating the probability of each arrangement occurring if the sequential coin flip method is used.

Arrangement	A	B	C	D	E	F
Probability						

(ii) For the sequential coin flip method, what is the probability that Man 1 and Man 2 are assigned to the same group?

The six arrangements are repeated below.

Arrangement A	
Treatment	Control
Man 1	Woman 1
Man 2	Woman 2

Arrangement B	
Treatment	Control
Man 1	Man 2
Woman 1	Woman 2

Arrangement C	
Treatment	Control
Man 1	Man 2
Woman 2	Woman 1

Arrangement D	
Treatment	Control
Woman 1	Man 1
Woman 2	Man 2

Arrangement E	
Treatment	Control
Man 2	Man 1
Woman 2	Woman 1

Arrangement F	
Treatment	Control
Man 2	Man 1
Woman 1	Woman 2

(b) For the chip method, two chips are marked "treatment" and two chips are marked "control." Each person selects one chip at random without replacement.
(i) Complete the table below by calculating the probability of each arrangement occurring if the chip method is used.

Arrangement	A	B	C	D	E	F
Probability						

(ii) For the chip method, what is the probability that Man 1 and Man 2 are assigned to the same group?
(c) Sixteen participants consisting of 10 students and 6 teachers at an elementary school will be used for an experiment to determine lunch preference for the school population of students and teachers. As the participants enter the school cafeteria for lunch, they will be randomly assigned to receive one of two lunches so that 8 will receive a salad, and 8 will receive a grilled cheese sandwich. The students will enter the cafeteria first, and the teachers will enter next. Which method, the sequential coin flip method or the chip method, should be used to assign the treatments? Justify your choice.
6. A newspaper in Germany reported that the more semesters needed to complete an academic program at the university, the greater the starting salary in the first year of a job. The report was based on a study that used a random sample of 24 people who had recently completed an academic program. Information was collected on the number of semesters each person in the sample needed to complete the program and the starting salary, in thousands of euros, for the first year of a job. The data are shown in the scatterplot below.

(a) Does the scatterplot support the newspaper report about number of semesters and starting salary? Justify your answer.

The table below shows computer output from a linear regression analysis on the data.

Predictor	Coef	SE Coef	T	P
Constant	34.018	4.455	7.64	0.000
Semesters	1.1594	0.3482	3.33	0.003
S $=7.37702$	R-Sq $=33.5 \%$	R-Sq $(\mathrm{adj})=30.5 \%$		

The table below shows computer output from a linear regression analysis on the data.

Predictor	Coef	SE Coef	T	P
Constant	34.018	4.455	7.64	0.000
Semesters	1.1594	0.3482	3.33	0.003
S = 7.37702	R-Sq $=33.5 \%$	R-Sq(adj) $=30.5 \%$		

(b) Identify the slope of the least-squares regression line, and interpret the slope in context.

An independent researcher received the data from the newspaper and conducted a new analysis by separating the data into three groups based on the major of each person. A revised scatterplot identifying the major of each person is shown below.

(c) Based on the people in the sample, describe the association between starting salary and number of semesters for the business majors.
(d) Based on the people in the sample, compare the median starting salaries for the three majors.
(e) Based on the analysis conducted by the independent researcher, how could the newspaper report be modified to give a better description of the relationship between the number of semesters and the starting salary for the people in the sample?
6. Corn tortillas are made at a large facility that produces 100,000 tortillas per day on each of its two production lines. The distribution of the diameters of the tortillas produced on production line A is approximately normal with mean 5.9 inches, and the distribution of the diameters of the tortillas produced on production line B is approximately normal with mean 6.1 inches. The figure below shows the distributions of diameters for the two production lines.

The tortillas produced at the factory are advertised as having a diameter of 6 inches. For the purpose of quality control, a sample of 200 tortillas is selected and the diameters are measured. From the sample of 200 tortillas, the manager of the facility wants to estimate the mean diameter, in inches, of the 200,000 tortillas produced on a given day. Two sampling methods have been proposed.

Method 1: Take a random sample of 200 tortillas from the 200,000 tortillas produced on a given day. Measure the diameter of each selected tortilla.
Method 2: Randomly select one of the two production lines on a given day. Take a random sample of 200 tortillas from the 100,000 tortillas produced by the selected production line. Measure the diameter of each selected tortilla.
(a) Will a sample obtained using Method 2 be representative of the population of all tortillas made that day, with respect to the diameters of the tortillas? Explain why or why not.
(b) The figure below is a histogram of 200 diameters obtained by using one of the two sampling methods described. Considering the shape of the histogram, explain which method, Method 1 or Method 2, was most likely used to obtain a such a sample.

(c) Which of the two sampling methods, Method 1 or Method 2 , will result in less variability in the diameters of the 200 tortillas in the sample on a given day? Explain.

Each day, the distribution of the 200,000 tortillas made that day has mean diameter 6 inches with standard deviation 0.11 inch.
(d) For samples of size 200 taken from one day's production, describe the sampling distribution of the sample mean diameter for samples that are obtained using Method 1.
(e) Suppose that one of the two sampling methods will be selected and used every day for one year (365 days). The sample mean of the 200 diameters will be recorded each day. Which of the two methods will result in less variability in the distribution of the 365 sample means? Explain.
(f) A government inspector will visit the facility on June 22 to observe the sampling and to determine if the factory is in compliance with the advertised mean diameter of 6 inches. The manager knows that, with both sampling methods, the sample mean is an unbiased estimator of the population mean. However, the manager is unsure which method is more likely to produce a sample mean that is close to 6 inches on the day of sampling. Based on your previous answers, which of the two sampling methods, Method 1 or Method 2, is more likely to produce a sample mean close to 6 inches? Explain.
6. Jamal is researching the characteristics of a car that might be useful in predicting the fuel consumption rate (FCR); that is, the number of gallons of gasoline that the car requires to travel 100 miles under conditions of typical city driving. The length of a car is one explanatory variable that can be used to predict FCR. Graph I is a scatterplot showing the lengths of 66 cars plotted with the corresponding FCR. One point on the graph is labeled A.

GRAPH I

Jamal examined the scatterplot and determined that a linear model would be a reasonable way to express the relationship between FCR and length. A computer output from a linear regression is shown below.

Linear Fit
FCR $=-1.595789+0.0372614$ * Length
Summary of Fit

RSquare	0.250401
Root Mean Square Error	0.902382
Observations	66

(a) The point on the graph labeled A represents one car of length 175 inches and an FCR of 5.88. Calculate and interpret the residual for the car relative to the least squares regression line.

Jamal knows that it is possible to predict a response variable using more than one explanatory variable. He wants to see if he can improve the original model of predicting FCR from length by including a second explanatory variable in addition to length. He is considering including engine size, in liters, or wheel base (the length between axles), in inches. Graph II is a scatterplot showing the engine size of the 66 cars plotted with the corresponding residuals from the regression of FCR on length. Graph III is a scatterplot showing the wheel base of the 66 cars plotted with the corresponding residuals from the regression of FCR on length.

GRAPH II

GRAPH III

(b) In graph II, the point labeled A corresponds to the same car whose point was labeled A in graph I. The measurements for the car represented by point A are given below.

FCR	Length (inches)	Engine Size (liters)	Wheel Base (inches)
5.88	175	3.6	93

(i) Circle the point on graph III that corresponds to the car represented by point A on graphs I and II.
(ii) There is a point on graph III labeled B. It is very close to the horizontal line at 0 . What does that indicate about the FCR of the car represented by point B ?
(c) Write a few sentences to compare the association between the variables in graph II with the association between the variables in graph III.
(d) Jamal wants to predict FCR using length and one of the other variables, engine size or wheel base. Based on your response to part (c), which variable, engine size or wheel base, should Jamal use in addition to length if he wants to improve the prediction? Explain why you chose that variable.
6. Tropical storms in the Pacific Ocean with sustained winds that exceed 74 miles per hour are called typhoons. Graph A below displays the number of recorded typhoons in two regions of the Pacific Ocean - the Eastern Pacific and the Western Pacific-for the years from 1997 to 2010.

(a) Compare the distributions of yearly frequencies of typhoons for the two regions of the Pacific Ocean for the years from 1997 to 2010.
(b) For each region, describe how the yearly frequencies changed over the time period from 1997 to 2010.

A moving average for data collected at regular time increments is the average of data values for two or more consecutive increments. The 4 -year moving averages for the typhoon data are provided in the table below. For example, the Eastern Pacific 4 -year moving average for 2000 is the average of $22,16,15$, and 21 , which is equal to 18.50 .

Year	Number of Typhoons in the Eastern Pacific	Eastern Pacific 4-year moving average	Number of Typhoons in the Western Pacific	Western Pacific 4-year moving average
1997	22			
1998	16		33	
			27	
1999	15	18.50	36	37
2000	21	17.75	37	33.25
2001	19	18.50	39	34.25
2002	19	19.00	30	37.25
2003	17	18.00	34	35.00
2004	17	17.50	26	32.25
2005	17	19.00	34	31.00
2006	25	19.50	28	30.50
2007	19	20.25	27	28.75
2008	20	21.75	28	29.25
2009	23	20.00	18	
2010	18			

(c) Show how to calculate the 4-year moving average for the year 2010 in the Western Pacific. Write your value in the appropriate place in the table.
(d) Graph B below shows both yearly frequencies (connected by dashed lines) and the respective 4 -year moving averages (connected by solid lines). Use your answer in part (c) to complete the graph.

GRAPH B

(e) Consider graph B.
i) What information is more apparent from the plots of the 4-year moving averages than from the plots of the yearly frequencies of typhoons?
ii) What information is less apparent from the plots of the 4 -year moving averages than from the plots of the yearly frequencies of typhoons?
6. Two students at a large high school, Peter and Rania, wanted to estimate μ, the mean number of soft drinks that a student at their school consumes in a week. A complete roster of the names and genders for the 2,000 students at their school was available. Peter selected a simple random sample of 100 students. Rania, knowing that 60 percent of the students at the school are female, selected a simple random sample of 60 females and an independent simple random sample of 40 males. Both asked all of the students in their samples how many soft drinks they typically consume in a week.
(a) Describe a method Peter could have used to select a simple random sample of 100 students from the school.

Peter and Rania conducted their studies as described. Peter used the sample mean \bar{X} as a point estimator for μ. Rania used $\bar{X}_{\text {overall }}=(0.6) \bar{X}_{\text {female }}+(0.4) \bar{X}_{\text {male }}$ as a point estimator for μ, where $\bar{X}_{\text {female }}$ is the mean of the sample of 60 females and $\bar{X}_{\text {male }}$ is the mean of the sample of 40 males.
Summary statistics for Peter's data are shown in the table below.

Variable	N	Mean	Standard Deviation
Number of soft drinks	100	5.32	4.13

(b) Based on the summary statistics, calculate the estimated standard deviation of the sampling distribution (sometimes called the standard error) of Peter's point estimator \bar{X}.

Summary statistics for Rania's data are shown in the table below.

Variable	Gender	N	Mean	Standard Deviation
Number of soft drinks	Female	60	2.90	1.80
	Male	40	7.45	2.22

(c) Based on the summary statistics, calculate the estimated standard deviation of the sampling distribution of Rania's point estimator $\bar{X}_{\text {overall }}=(0.6) \bar{X}_{\text {female }}+(0.4) \bar{X}_{\text {male }}$.

A dotplot of Peter's sample data is given below.

Comparative dotplots of Rania's sample data are given below.

(d) Using the dotplots above, explain why Rania's point estimator has a smaller estimated standard deviation than the estimated standard deviation of Peter's point estimator.

Part B
 Question 6

Spend about 25 minutes on this part of the exam.

Percent of Section II score- 25

Directions: Show all your work. Indicate clearly the methods you use, because you will be scored on the correctness of your methods as well as on the accuracy and completeness of your results and explanations.
6. Every year, each student in a nationally representative sample is given tests in various subjects. Recently, a random sample of 9,600 twelfth-grade students from the United States were administered a multiple-choice United States history exam. One of the multiple-choice questions is below. (The correct answer is C.)

In 1935 and 1936 the Supreme Court declared that important parts of the New Deal were unconstitutional. President Roosevelt responded by threatening to
(A) impeach several Supreme Court justices
(B) eliminate the Supreme Court
(C) appoint additional Supreme Court justices who shared his views
(D) override the Supreme Court's decisions by gaining three-fourths majorities in both houses of Congress

Of the 9,600 students, 28 percent answered the multiple-choice question correctly.
(a) Let p be the proportion of all United States twelfth-grade students who would answer the question correctly. Construct and interpret a 99 percent confidence interval for p.

Assume that students who actually know the correct answer have a 100 percent chance of answering the question correctly, and students who do not know the correct answer to the question guess completely at random from among the four options.
Let k represent the proportion of all United States twelfth-grade students who actually know the correct answer to the question.
(b) A tree diagram of the possible outcomes for a randomly selected twelfth-grade student is provided below. Write the correct probability in each of the five empty boxes. Some of the probabilities may be expressions in terms of k.

TREE DIAGRAM OF OUTCOMES FOR A RANDOMLY SELECTED TWELFTH-GRADE STUDENT

(c) Based on the completed tree diagram, express the probability, in terms of k, that a randomly selected twelfth-grade student would correctly answer the history question.
(d) Using your interval from part (a) and your answer to part (c), calculate and interpret a 99 percent confidence interval for k, the proportion of all United States twelfth-grade students who actually know the answer to the history question. You may assume that the conditions for inference for the confidence interval have been checked and verified.
6. Hurricane damage amounts, in millions of dollars per acre, were estimated from insurance records for major hurricanes for the past three decades. A stratified random sample of five locations (based on categories of distance from the coast) was selected from each of three coastal regions in the southeastern United States. The three regions were Gulf Coast (Alabama, Louisiana, Mississippi), Florida, and Lower Atlantic (Georgia, South Carolina, North Carolina). Damage amounts in millions of dollars per acre, adjusted for inflation, are shown in the table below.

> HURRICANE DAMAGE AMOUNTS IN MILLIONS OF DOLLARS PER ACRE

	Distance from Coast				
	<1 mile	1 to 2 miles	2 to 5 miles	5 to 10 miles	10 to 20 miles
Gulf Coast	24.7	21.0	12.0	7.3	1.7
Florida	35.1	31.7	20.7	6.4	3.0
Lower Atlantic	21.8	15.7	12.6	1.2	0.3

(a) Sketch a graphical display that compares the hurricane damage amounts per acre for the three different coastal regions (Gulf Coast, Florida, and Lower Atlantic) and that also shows how the damage amounts vary with distance from the coast.
(b) Describe differences and similarities in the hurricane damage amounts among the three regions.

Because the distributions of hurricane damage amounts are often skewed, statisticians frequently use rank values to analyze such data.
(c) In the table below, the hurricane damage amounts have been replaced by the ranks 1, 2, or 3. For each of the distance categories, the highest damage amount is assigned a rank of 1 and the lowest damage amount is assigned a rank of 3 . Determine the missing ranks for the 10 -to- 20 -miles distance category and calculate the average rank for each of the three regions. Place the values in the table below.

ASSIGNED RANKS WITHIN DISTANCE CATEGORIES

	Distance from Coast					
	<1 mile	1 to 2 miles	2 to 5 miles	5 to 10 miles	10 to 20 miles	Average Rank
Gulf Coast	2	2	3	1		
Florida	1	1	1	2		
Lower Atlantic	3	3	2	3		

(d) Consider testing the following hypotheses.
H_{0} : There is no difference in the distributions of hurricane damage amounts among the three regions.
H_{a} : There is a difference in the distributions of hurricane damage amounts among the three regions.

If there is no difference in the distribution of hurricane damage amounts among the three regions (Gulf Coast, Florida, and Lower Atlantic), the expected value of the average rank for each of the three regions is 2. Therefore, the following test statistic can be used to evaluate the hypotheses above:

$$
Q=5\left[\left(\bar{R}_{G}-2\right)^{2}+\left(\bar{R}_{F}-2\right)^{2}+\left(\bar{R}_{A}-2\right)^{2}\right]
$$

where \bar{R}_{G} is the average rank over the five distance categories for the Gulf Coast (and \bar{R}_{F} and \bar{R}_{A} are similarly defined for the Florida and Lower Atlantic coastal regions).

Calculate the value of the test statistic Q using the average ranks you obtained in part (c).
(e) One thousand simulated values of this test statistic, Q, were calculated, assuming no difference in the distributions of hurricane damage amounts among the three coastal regions. The results are shown in the table below. These data are also shown in the frequency plot where the heights of the lines represent the frequency of occurrence of simulated values of Q .

Frequency Table for Simulated Values of Q

Q	Frequency	Cumulative Frequency	Percent	Cumulative Percent
0.0	48	48	4.80	4.80
0.4	262	310	26.20	31.00
1.2	168	478	16.80	47.80
1.6	153	631	15.30	63.10
2.8	186	817	18.60	81.70
3.6	59	876	5.90	87.60
4.8	33	909	3.30	90.90
5.2	52	961	5.20	96.10
6.4	16	977	1.60	97.70
7.6	15	992	1.50	99.20
8.4	6	998	0.60	99.80
10.0	2	1000	0.20	100.00

Use these simulated values and the test statistic you calculated in part (d) to determine if the observed data provide evidence of a significant difference in the distributions of hurricane damage amounts among the three coastal regions. Explain.

Tables following on next 4 pages are the same as given on the AP exam (at the end of both the MC and FRQ)

Table A Standard normal probabilities

z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
-3.4	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0002
-3.3	. 0005	. 0005	. 0005	. 0004	. 0004	. 0004	. 0004	. 0004	. 0004	. 0003
-3.2	. 0007	. 00007	. 0006	. 0006	. 0006	. 0006	. 0006	. 0005	. 0005	. 0005
-3.1	. 0010	. 0009	. 0009	. 0009	. 0008	. 0008	. 0008	. 0008	. 00007	. 00007
-3.0	. 0013	. 0013	. 0013	. 0012	. 0012	. 0011	. 0011	. 0011	. 0010	. 0010
-2.9	. 0019	. 0018	. 0018	. 0017	. 0016	. 0016	. 0015	. 0015	. 0014	. 0014
-2.8	. 0026	. 0025	. 0024	. 0023	. 0023	. 0022	. 0021	. 0021	. 0020	. 0019
-2.7	. 0035	. 0034	. 0033	. 0032	. 0031	. 0030	. 0029	. 0028	. 0027	. 0026
-2.6	. 0047	. 0045	. 0044	. 0043	. 0041	. 0040	. 0039	. 0038	. 0037	. 0036
-2.5	. 0062	. 0060	. 0059	. 0057	. 0055	. 0054	. 0052	. 0051	. 0049	. 0048
-2.4	. 0082	. 0080	. 0078	. 0075	. 0073	. 0071	. 0069	. 0068	. 0066	. 0064
-2.3	. 0107	. 0104	. 0102	. 0099	. 0096	. 0094	. 0091	. 0089	. 0087	. 0084
-2.2	. 0139	. 0136	. 0132	. 0129	. 0125	. 0122	. 0119	. 0116	. 0113	. 0110
-2.1	. 0179	. 0174	. 0170	. 0166	. 0162	. 0158	. 0154	. 0150	. 0146	. 0143
-2.0	. 0228	. 0222	. 0217	. 0212	. 0207	. 0202	. 0197	. 0192	. 0188	. 0183
-1.9	. 0287	. 0281	. 0274	. 0268	. 0262	. 0256	. 0250	. 0244	. 0239	. 0233
-1.8	. 0359	. 0351	. 0344	. 0336	. 0329	. 0322	. 0314	. 0307	. 0301	. 0294
-1.7	. 0446	. 0436	. 0427	. 0418	. 0409	. 0401	. 0392	. 0384	. 0375	. 0367
-1.6	. 0548	. 0537	. 0526	. 0516	. 0505	. 0495	. 0485	. 0475	. 0465	. 0455
-1.5	. 0668	. 0655	. 0643	. 0630	. 0618	. 0606	. 0594	. 0582	. 0571	. 0559
-1.4	. 0808	. 0793	. 0778	. 0764	. 0749	. 0735	. 0721	. 0708	. 0694	. 0681
-1.3	. 0968	. 0951	. 0934	. 0918	. 0901	. 0885	. 0869	. 0853	. 0838	. 0823
-1.2	. 1151	. 1131	. 1112	. 1093	. 1075	. 1056	. 1038	. 1020	. 1003	. 0985
-1.1	. 1357	. 1335	. 1314	. 1292	. 1271	. 1251	. 1230	. 1210	. 1190	. 1170
-1.0	. 1587	. 1562	. 1539	. 1515	. 1492	. 1469	. 1446	. 1423	. 1401	. 1379
-0.9	. 1841	. 1814	. 1788	. 1762	. 1736	. 1711	. 1685	. 1660	. 1635	. 1611
-0.8	. 2119	. 2090	. 2061	. 2033	. 2005	. 1977	. 1949	. 1922	. 1894	. 1867
-0.7	. 2420	. 2389	. 2358	. 2327	. 2296	. 2266	. 2236	. 2206	. 2177	. 2148
-0.6	. 2743	. 2709	. 2676	. 2643	. 2611	. 2578	. 2546	. 2514	. 2483	. 2451
-0.5	. 3085	. 3050	. 3015	. 2981	. 2946	. 2912	. 2877	. 2843	. 2810	. 2776
-0.4	. 3446	. 3409	. 3372	. 3336	. 3300	. 3264	. 3228	. 3192	. 3156	. 3121
-0.3	. 3821	. 3783	. 3745	. 3707	. 3669	. 3632	. 3594	. 3557	. 3520	. 3483
-0.2	. 4207	. 4168	. 4129	. 4090	. 4052	. 4013	. 3974	. 3936	. 3897	. 3859
-0.1	. 4602	. 4562	. 4522	. 4483	. 4443	. 4404	. 4364	. 4325	. 4286	. 4247
-0.0	. 5000	. 4960	. 4920	. 4880	. 4840	. 4801	. 4761	. 4721	. 4681	. 4641

Table entry for z is the probability lying below z.

Table A (Continued)

z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.0	. 5000	. 5040	. 5080	. 5120	. 5160	. 5199	. 5239	. 5279	. 5319	. 5359
0.1	. 5398	. 5438	. 5478	. 5517	. 5557	. 5596	. 5636	. 5675	. 5714	. 5753
0.2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 6141
0.3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
0.4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879
0.5	. 6915	. 6950	. 6985	. 7019	. 7054	. 7088	. 7123	. 7157	. 7190	. 7224
0.6	. 7257	. 7291	. 7324	. 7357	. 7389	. 7422	. 7454	. 7486	. 7517	. 7549
0.7	. 7580	. 7611	. 7642	. 7673	. 7704	. 7734	. 7764	. 7794	. 7823	. 7852
0.8	. 7881	. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	. 8133
0.9	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 8389
1.0	. 8413	. 8438	. 8461	. 8485	. 8508	8531	. 8554	. 8577	. 8599	. 8621
1.1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	. 8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	. 9015
1.3	. 9032	. 9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 9147	. 9162	. 9177
1.4	. 9192	. 9207	. 9222	. 9236	. 9251	. 9265	. 9279	. 9292	. 9306	. 9319
1.5	. 9332	. 9345	. 9357	. 9370	. 9382	. 9394	. 9406	. 9418	. 9429	. 9441
1.6	. 9452	. 9463	. 9474	. 9484	. 9495	. 9505	. 9515	. 9525	. 9535	. 9545
1.7	. 9554	. 9564	. 9573	. 9582	. 9591	. 9599	. 9608	. 9616	. 9625	. 9633
1.8	. 9641	. 9649	. 9656	. 9664	. 9671	. 9678	. 9686	. 9693	. 9699	. 9706
1.9	. 9713	. 9719	. 9726	. 9732	. 9738	. 9744	. 9750	. 9756	. 9761	. 9767
2.0	. 9772	. 9778	. 9783	. 9788	. 9793	9798	. 9803	. 9808	. 9812	. 9817
2.1	. 9821	. 9826	. 9830	. 9834	. 9838	. 9842	. 9846	. 9850	. 9854	. 9857
2.2	. 9861	. 9864	. 9868	. 9871	. 9875	. 9878	. 9881	. 9884	. 9887	. 9890
2.3	. 9893	. 9896	. 9898	. 9901	. 9904	. 9906	. 9909	. 9911	. 9913	. 9916
2.4	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	. 9931	. 9932	. 9934	. 9936
2.5	. 9938	. 9940	. 9941	. 9943	. 9945	. 9946	. 9948	. 9949	. 9951	. 9952
2.6	. 9953	. 9955	. 9956	. 9957	. 9959	. 9960	. 9961	. 9962	. 9963	. 9964
2.7	. 9965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	. 9973	. 9974
2.8	. 9974	. 9975	. 9976	. 9977	. 9977	. 9978	. 9979	. 9979	. 9980	. 9981
2.9	. 9981	. 9982	. 9982	. 9983	. 9984	. 9984	. 9985	. 9985	. 9986	. 9986
3.0	. 9987	. 9987	. 9987	. 9988	. 9988	9989	. 9989	. 9989	. 9990	. 9990
3.1	. 9990	. 9991	. 9991	. 9991	. 9992	. 9992	. 9992	. 9992	. 9993	. 9993
3.2	. 9993	. 9993	. 9994	. 9994	. 9994	. 9994	. 9994	. 9995	. 9995	. 9995
3.3	. 9995	. 9995	. 9995	. 9996	. 9996	. 9996	. 9996	. 9996	. 9996	. 9997
3.4	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9998

Table B t distribution critical values

	Tail probability p											
df	. 25	. 20	. 15	. 10	. 05	. 025	. 02	. 01	. 005	. 0025	. 001	. 0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	. 816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	. 765	. 978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	. 741	. 941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	. 727	. 920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	. 718	. 906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	. 711	. 896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	. 706	. 889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	. 703	. 883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	. 700	. 879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	. 697	. 876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	. 695	. 873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	. 694	. 870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	. 692	. 868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	. 691	. 866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	. 690	. 865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	. 689	. 863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	. 688	. 862	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.611	3.922
19	. 688	. 861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	. 687	. 860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	. 686	. 859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	. 686	. 858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	. 685	. 858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	. 685	. 857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	. 684	. 856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	. 684	. 856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	. 684	. 855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690
28	. 683	. 855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674
29	. 683	. 854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30	. 683	. 854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.646
40	. 681	. 851	1.050	1.303	1.684	2.021	2.123	2.423	2.704	2.971	3.307	3.551
50	. 679	. 849	1.047	1.299	1.676	2.009	2.109	2.403	2.678	2.937	3.261	3.496
60	. 679	. 848	1.045	1.296	1.671	2.000	2.099	2.390	2.660	2.915	3.232	3.460
80	. 678	. 846	1.043	1.292	1.664	1.990	2.088	2.374	2.639	2.887	3.195	3.416
100	. 677	. 845	1.042	1.290	1.660	1.984	2.081	2.364	2.626	2.871	3.174	3.390
1000	. 675	. 842	1.037	1.282	1.646	1.962	2.056	2.330	2.581	2.813	3.098	3.300
∞	. 674	. 841	1.036	1.282	1.645	1.960	2.054	2.326	2.576	2.807	3.091	3.291
	50\%	60\%	70\%	80\%	90\%	95\%	96\%	98\%	99\%	99.5\%	99.8\%	99.9\%

[^0]Table entry for p is the point $\left(\chi^{2}\right)$ with probability p lying above it.

$\left(\chi^{2}\right)$

Table C $\quad \chi^{2}$ critical values

	Tail probability p											
df	. 25	. 20	. 15	. 10	. 05	. 025	. 02	. 01	. 005	. 0025	. 001	. 0005
1	1.32	1.64	2.07	2.71	3.84	5.02	5.41	6.63	7.88	9.14	10.83	12.12
2	2.77	3.22	3.79	4.61	5.99	7.38	7.82	9.21	10.60	11.98	13.82	15.20
3	4.11	4.64	5.32	6.25	7.81	9.35	9.84	11.34	12.84	14.32	16.27	17.73
4	5.39	5.99	6.74	7.78	9.49	11.14	11.67	13.28	14.86	16.42	18.47	20.00
5	6.63	7.29	8.12	9.24	11.07	12.83	13.39	15.09	16.75	18.39	20.51	22.11
6	7.84	8.56	9.45	10.64	12.59	14.45	15.03	16.81	18.55	20.25	22.46	24.10
7	9.04	9.80	10.75	12.02	14.07	16.01	16.62	18.48	20.28	22.04	24.32	26.02
8	10.22	11.03	12.03	13.36	15.51	17.53	18.17	20.09	21.95	23.77	26.12	27.87
9	11.39	12.24	13.29	14.68	16.92	19.02	19.68	21.67	23.59	25.46	27.88	29.67
10	12.55	13.44	14.53	15.99	18.31	20.48	21.16	23.21	25.19	27.11	29.59	31.42
11	13.70	14.63	15.77	17.28	19.68	21.92	22.62	24.72	26.76	28.73	31.26	33.14
12	14.85	15.81	16.99	18.55	21.03	23.34	24.05	26.22	28.30	30.32	32.91	34.82
13	15.98	16.98	18.20	19.81	22.36	24.74	25.47	27.69	29.82	31.88	34.53	36.48
14	17.12	18.15	19.41	21.06	23.68	26.12	26.87	29.14	31.32	33.43	36.12	38.11
15	18.25	19.31	20.60	22.31	25.00	27.49	28.26	30.58	32.80	34.95	37.70	39.72
16	19.37	20.47	21.79	23.54	26.30	28.85	29.63	32.00	34.27	36.46	39.25	41.31
17	20.49	21.61	22.98	24.77	27.59	30.19	31.00	33.41	35.72	37.95	40.79	42.88
18	21.60	22.76	24.16	25.99	28.87	31.53	32.35	34.81	37.16	39.42	42.31	44.43
19	22.72	23.90	25.33	27.20	30.14	32.85	33.69	36.19	38.58	40.88	43.82	45.97
20	23.83	25.04	26.50	28.41	31.41	34.17	35.02	37.57	40.00	42.34	45.31	47.50
21	24.93	26.17	27.66	29.62	32.67	35.48	36.34	38.93	41.40	43.78	46.80	49.01
22	26.04	27.30	28.82	30.81	33.92	36.78	37.66	40.29	42.80	45.20	48.27	50.51
23	27.14	28.43	29.98	32.01	35.17	38.08	38.97	41.64	44.18	46.62	49.73	52.00
24	28.24	29.55	31.13	33.20	36.42	39.36	40.27	42.98	45.56	48.03	51.18	53.48
25	29.34	30.68	32.28	34.38	37.65	40.65	41.57	44.31	46.93	49.44	52.62	54.95
26	30.43	31.79	33.43	35.56	38.89	41.92	42.86	45.64	48.29	50.83	54.05	56.41
27	31.53	32.91	34.57	36.74	40.11	43.19	44.14	46.96	49.64	52.22	55.48	57.86
28	32.62	34.03	35.71	37.92	41.34	44.46	45.42	48.28	50.99	53.59	56.89	59.30
29	33.71	35.14	36.85	39.09	42.56	45.72	46.69	49.59	52.34	54.97	58.30	60.73
30	34.80	36.25	37.99	40.26	43.77	46.98	47.96	50.89	53.67	56.33	59.70	62.16
40	45.62	47.27	49.24	51.81	55.76	59.34	60.44	63.69	66.77	69.70	73.40	76.09
50	56.33	58.16	60.35	63.17	67.50	71.42	72.61	76.15	79.49	82.66	86.66	89.56
60	66.98	68.97	71.34	74.40	79.08	83.30	84.58	88.38	91.95	95.34	99.61	102.7
80	88.13	90.41	93.11	96.58	101.9	106.6	108.1	112.3	116.3	120.1	124.8	128.3
100	109.1	111.7	114.7	118.5	124.3	129.6	131.1	135.8	140.2	144.3	149.4	153.2

[^0]: Confidence level C

